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0 1 Introduction 

The WHH theory[1] is one of the most widely used theories of Hc21 the upper crit-

ical field at which superconducting behavior is suppressed. Originally proposed in 

1966, this theory was first tested against data on Nb-Ti measured by Neuringer 

and Shapira(2], which it appeared to fit quite accurately. However, when it was 

used to describe the behavior of other systems, the agreement was not as good. 

Hawksworth and Larbalestier[3] not iced that tantalum additions to the Nb-Ti sys-

tern raised the H,
2 

value to such an extent that the WHH theory no longer agreed 

with experiment. At about the same time, Orlando et . al.[4] suggested a modifi-

cation to the basic theory which would reduce the disagreement between predicted 

and measured H,
2 

for the Nb3Sn and V 3Si systems. This correction, based on the 

renormalization treatment of the electron-phonon interaction, had been suggested 

earlier by Clogston[S], but was not fully developed. 

This revision of the WHH theory seems physically well founded, but the be-

havior of Nb-Ti has not been examined in light of this revision. The earlier studies 

of Nb-Ti[2](3] concluded that the material was paramagnetically limited, with Hc2 

reduced below the depairing limit by the paramagnetic moment of the normal 

state material. Renormalization corrections alter this picture and greatly reduce 

the importance of paramagnetic limitation effects. In this study, a set of Nb-Ti 

alloys, fabricated and metallurgically characterized previously by Moffat(6], was 
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examined. The revised WHH parameters for each of these alloys were derived 

from electromagnetic and thermal measurements, and the predicted Hc2 values 

based on these values were compared to the measurements. 

The first section is a general overview of the metallurgy of the Nb-Ti system. 

The second, third, and fourth sections present metallurgical, chemical, and struc-

tural information about the eight alloys used in this study. This information has 

been previously pub.lished in greater detail by Moffat and Larbalestier[7]. Sections 

five, six and seven present resistivity, critical field, and critical temperature data for 

these alloys, as well as experimental details concerning the measurement of these 

quantities. Section eight describes the heat capacity measurement apparatus, and 

section nine briefly compares the calorimetrically measured critical temperatures 

with those measured using other techniques. In section ten, the heat capacity data 

is presented and analyzed using the Debye model to determine the electronic heat 

capacity coefficient. Section eleven compares this electronic heat capacity to that 

predicted by the GLAG theory, one of the precursors of the WHH theory. Section 

twelve outlines the WHH theory, while section thirteen examines the revisions to 

this theory suggested by Orlando et al.[4], and experimental schemes for deter-

mining the parameters of this theory. The harmonic lattice approximation for the 

lattice specific heat is reviewed in section fourteen, and a method for extracting 

phonon density of states from heat capacity data is presented. In section fifteen, 

critical field data is compared to the predictions of the revised WHH theory, and 
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discrepancies are discussed. 

2 The Nb-Ti System 

The Nb-Ti system exhibits two stable phases, hexagonal close packed a -titanium 

and body centered cubic /3-niobium.[8] There are also some metastable phases 

which are created when the alloy is cooled rapidly from relatively high temperature: 

there are two martensitic variants of a, and the w phase, which are hexagonal 

derivatives of the BCC lattice.[9] It is possible to freeze in the /3 phase structure 

and suppress formation of other phases with a sufficiently rapid quench fi:om a 

temperature at which only f3 phase exists (above about 700°C). The quench rate . . 
necessary to prevent transformation depends strongly on composition and is very 

large for the titanium rich alloys (about 3000 K/s for Ti18at.%Nb).[10] 

According to a model proposed by DeFontaine[ll], the w phase can also ex-

ist in a virtual state, a temporary structural excitation of the BCC lattice, if 

the 2/3 < 111 > phonon mode has sufficiently low energy. Neutron diffraction 

measurements show that even pure niobium exhibits pronounced softening of that 

mode.[12] Vohra has maintained, based on band structure calculations and mea-

surements on w phase alloys, that the stability of the /3 lattice against this trans-

formation to w should decrease as the d-electron concentration is reduced.[13] In 

Nb-Ti alloys, this occu~s as t itanium concentration increases. Thus, even if the 
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metallurgical phase of a sample is pure (3, some signs of this virtual w can be 

expected, such as diffuse x-ray scattering into areas of ·the reciprocal lattice asso-

ciated with the w structure. Such scattering has been studied by Balcerzak and 

Sass[l4], and by Moffat and Larbalestier.[7] 

3 Preparation of Alloy Samples 

The Nb-Ti alloys in this study were prepared by Moffat[6) for a comprehensive 

study of the phase relationships of the system. They were used in this study 

. -
because they were fully characterized microstructurally and are believed to be as 

close to single phase, homogeneous alloys as it is possible to obtain. What follows 

is only a brief review of the sample preparation, since full details have already been 

published. [6][7] 

These samples were melted in a titanium gettered argon atmosphere from com-

mercia! purity niobium (99.9 atomic percent) and titanium (99. 7 atomic percent) 

rods. These rods were chemically etched before arc melting, using a mixture of 

HF and HN03. The ingots were inverted and remelted at least ten times, and 

weight loss during this process corresponded to less than 1/2 atomic percent in 

every case. The ingots were then homogenized in niobium foil lined silica tubes. 

Because these tubes begin to soften at the homogenization temperature of 1300°C, 

they were filled at room temperature with ·20 kPa of gettered argon, to prevent 
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collapse at high temperature. The samples were quenched by breaking the silica 

capsules containing them under water. The homogenized ingots were swaged from 

irregular cylinders with about 8 mm mean diameter to 3 mm diameter rods, an 

true strain of 2. 

Chemical impurity analysis was conducted at this point, and the samples 

showed noticable hydrogen contamination (about 1/2 atomic percent), due to the 

water quench, so they were subjected to a vacuum anneal in 10-3 Pa argon at 

800°C for 3 hours. After this anneal, the hydrogen impurity levels decreased by 

about an order of magnitude, while the other impurities remained within a factor 

of 2 of their levels before annealing. Cold work from swaging was reduced by a 

recrystallization treatment at 1000°C. Since the capsules were rigid at that tern-

perature, this anneal was conducted in a gettered argon atmosphere of less than 

1 Pa. Since the diffusion constants for high niobium alloys are much lower than 

those for low niobium concentration, the heat treatment times were longer for the 

high niobium alloys.[6) The details of the heat treatment sequence and the results 

of impurity analyses are given in table 1. Each sample was finally quenched from 

the 1000°C anneal, as they had been from the 1300°C treatment, so it is likely 

that hydrogen contamination in the final samples is near the same level as it was 

after the first water quench. The interstitial content of these alloys are typical of 

those found in commercially produced Nb-Ti superconductor alloy. 

'Transmission electron microscopy and x-ray diffraction showed that the 20% 
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Alloy(~t. %Nb) 20 25 30 35 40 50 60 70 

Hrs at 1300°C 8 8 8 8 8 24 24 24 

IMPURITIES AFTER QUENCH values in appm/wppm 

c 507 496 
100 80 

N 783 271 
180 [)1 

0 2133 1630 
T60 350 

H 4535 3326 
~ 45 

IMPURITIES AFTER VACUUM ANNEAL appmjwppm 

c 755 786 866 739 666 526 746 791 
160 160 170 140 120 90 120 120 

N H 6 193 267 181 211 186 203 249 
110 46 59 40 4Cl 3f 38 « 

0 2903 3019 3821 2774 1930 1580 . 1634 U 25 
820 820 1000 700 470 360 350 490 

H 1068 993 646 692 Hi6 n 8 <371 <393 
19 17 9 11 7 6 <6 <6 

Hrs at 1000°C 8 8 8 8 24 24 24 24 

Table 1: Heat Treatment and Impurity Analysis 
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niobium sample has an orthorhombic lattice, corresponding to the a" martensite 

structure. The 25% sample also showed a" martensite near the surface of the rod, 

but the core was BCC f3 phase. Careful examination of this core revealed very 

fine precipitates of w phase. The remaining samples were all (3 phase throughout, 

but the diffraction patterns of the 30% and 35% alloys showed streaks in the 

reciprocal lattice image charecteristic of virtual w. The intensity of these streaks 

was too low and diffuse to form an image of precipitates, so it is unlikely that w is 

actually present. Additional optical microscopy, electron probe microanalysis, and 

back scattered electron imaging showed no compositional inhomogeneity in the 

samples. These techniques, in combination, have been shown to reveal 1 atomic 

percent variation in composition over a distance of about 1 JJm. (15] 

4 Resistivity Measurement 

In the resistivity measurement apparatus shown in figure 1, a sample rod is held by 

two spring loaded copper rods, which serve as curren t contacts and also press the 

sample against knife edge voltage contacts. This four point measurement is uncer-

tain to about 0.8%, principally due to variations in the diameter of the alloy rod. 

The measurement was conducted using a measuring current density of 0.1 A/mm2 

through the sample. Measurements at temperatures below 77K .were performed 

in cold helium gas, and the temperature was adjusted by raising or lowering the 
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sample in the stratified column of gas. The resistivity at T,· was measured at a 

height just above that at which resistance dissappeared in the sample. 

As shown in figure 21 resistivity depends strongly on titanium concentration 

and only weakly on temperature. For all the single phase samples1 the resistivity 

increases steadily with titanium content, and t~e temperature dependence, as mea-

sured by p(300)/ p(Tc) 1 becomes weaker. In the 20% and 25% alloys, which are two 

phase materials, the resistivity ratio increases as titanium content increases. This -~ 

agrees with earlier work on V-Ti[16] and Nb-Ti[11j which suggests that the soft 

phonon mode which exists in the BCC phase becomes more pronounced as campo-

sition becomes rriore titanium rich. The low energy phonons scatter electrons and 

increase resistance, but the~r population depends only weakly on temperature, at 

least at temperatures above T,. Thus, as alloy composition nears the phase sta-

bility boundary, the resistivity ratio pecreases. Once martensite formation occurs, 

the soft mode is suppressed,. causing the resistivity ratio to increase again. 

The resistivities measured in this study are compared in figure 3 to previously 

published data. In the 20% and 25% alloys, the data are widely scattered, which is 

not suprising in view of the wide variety of microstru.ctures which are possible for 

different impurity levels and sample heat treatments. The Berlincourt and Hake 

data are uniformly higher than other data, though with the same composition 
.) 

dependence. This may be due to the cold work present' in their samples, which 

can enhance resistivity(19], or perhaps due to the generally higher interstitial con-



,-~ 

I t 
I , 

. ' ' 
t. 

l i 
I I 
f J 

[! 

[ l 
_l 

I i 

1 I 

II 17 

VOLTAGE 
CONTACTS 

CURRENT 
LEADS 

SPRINGS 

\Ill 

Figure 1: Resistivity Measurement Apparatus 

9 



, .. t 

I ~ 
,.-·, 
1 : 

r 
I 1 

r : 
' I 

f. I 

I I : l 

(: 

l . 

/"i 
• I 

f i 
\ J 

r~ 

r1 
r: 
(.1 

t i 

r 1 
I I 

f I 
( 

I I 
t \ 

; I 

1 J 

I I 
1 \ 

ll 
I I 

,....._ 
s 
CJ 
I 

Cl 
;::1. 
~ 

p.., 
.j..J 
·r-1 
:> 

•r-1 
.j..J 
Cl) 

·r-1 
Cl) 

<l) 

~ 

1. 5 

1. 4 

1. 3 

1.2 

1.1 

+ RAA---> 

o~._._._._~~~~-L~~~~~~~~~~~ 

10 

0 20 40 60 80 100 

Atomic Percent Niobium 

Figure 2: Resistivity and RRR as a Function of Composition 



( , 
' I \ 

·<'·-

f( 

1 r 

r 1 

n 
!_\ 

Cl 

[I 

lr 
f 1 

. I 
l ( 

r ~ 

Ll 

.u 

11 

tent of these early alloys. The results of the present study seem reasonable for 

recrystallized samples. 

5 Upper Critical Field Measurements 

The Hc2 measurement apparatus is similar to that used for making resistivity 

measurements, with current and voltage contacts pressed against a sample ro.d. 

Here, however, the separation between voltage contacts is about 8 mm. Also, 

two thermometers are mounted on the copper current lead rods in contact with 

the sample. One of these thermometers is a capacitance sensor, used to control 

sample temperature in the presence of a magnetic field. The other thermometer, 

a germanium ~esistor, is us~d to calibrate the capacitance sensor, since this sensor 

changes calibration each time it is heated or cooled past 60K, at which ,point a 

phase transformation occurs in the sensor material (20]. For measurements above 

4.2K, the entire apparatus is placed inside a can containing low pressure helium 

gas, and the gas temperature is controlled using an ohmically heated shroud. At 

temperatures below 4.2K, the apparatus is immersed directly in liquid helium, 

and the temperature is adjusted by changing the pressure of gas above the bath, 

thereby changing the boiling temperature of the liquid. 

Previous investigators [3](21) have noted that measuring current density can 

affect resistively based Hc2 measurements. For the samples in this study, less than ., 
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0.02 Tesla variation in Hc2 was found with measuring current densities ranging from 

0.1 mA/mm2 to 10 mA/mm2. The shape of the transition was similarly unaffected, 

and for nearly all the samples the transition width (temperature spacing between 

points at which 10% and 90% of normal state resistivity was achieved) was about 

0.1 T. A measuring current density of 1 mA/mm2 was used for all the data in this · 

section, and Hc2 was taken to be the point at which resistivity equaled one half 

that of the normal state. 

All data for temperatures 4.2K and above were collected at the University of 

Wisconsin using a 13T superconducting magnet system. The data at 4.2K and 

below were collected using one of the Bitter solenoid magnets operated by the 

Francis Bitter National Magnet Laboratory at MIT. The Hc2 ( 4.2K) data at both 

locations agreed within 0.3T. These data are presented in figures 4 through 11. 

The Hc2 values at 4.2K are compared in figure 12 to those published in previous 

studies. T he maximum value measured in this study was 11.6T, for the 35% Nb 

alloy. There is general agreement about the shape of the Hc2 versus composition 

plot between the various data sets, but the actual spread in values can exceed 2 T. 

The data of Bellin et. al. are unusually high for compositions between 50% and 

80% Nb. This study used a different criterion for Hc2 than the others, marking it at 

the field at which lc(B) drops "rapidly", rather than the field at which resistivity 

rises to some sizable fraction of that of the normal state. However, this criterion 

should reduce rather than raise the critical field. At present, these results are 
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unexplained. Another discrepancy occurs for the 25% and 30% Nb alloys of the 

present study, which have higher Hc2 values than tho·se in other studies. Data 

presented in the next section shows that the Tc of these alloys are also unusually 

high, so it is likely that the Hc2 elevation is a consequence of structural differences 

resulting from their controlled thermal treatment. 

According to the WHH theory, the value of dHc2 fdT near Tc (above about .8Tc) 

should depend linearly on temperature[l). ·This limiting slope is indeed constant 

fo r all the alloys studied, and it is indicated on the Hc2 plots (figures 4-11). The 

errors associated with this limiting slope are based on the coefficient uncertainty of 

a linear least squares fit to the high temperature Hc2 data. The trend in dHc2 / dT is 

the same as that in Hc2 itself; the peak of both curves is near the 30% composition, 

though the contrast between maximum and minimum values is much smaller for 

the critical field slope than for the upper critical field . The maximum value of the 

slope is 3.25 T /K, exhibited by the 30% Nb alloy, while the minimum value, found 

in the 70% Nb alloy, was 1.5 T /K . 

6 Tr~nsition Temperature Measurement 

There are several ways to define the critical temperature of a superconductor. 

Traditionally, electrical resistivity is monitored while the sample is heated until 

the zero resistivity state disappears. Since a supercurrent can be sustained as long 
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as a filamentary superconducting path exists, the resistive transition is usually 

quite sharp, and can occur when most of the sample is already normal. In this 

study, the resistive T, is taken to be the midpoint of the resist ive transition, while 

the width is the spacing between the 10% and 90% values. 

Another measure of T, comes from extrapolating H,2 versus T data to the in-

tercept at Hc2 =0. This critical temperature is the most appropriate one to use in 

the WHH model, since it is based on the assumption of a linear H,2 temperature 

dependence which results from the theory. The chief determinant of the uncer-

tainty in this extrapolated T, is the wid th of the H,
2 

transition. Depending on 

what cri terion is used for H,2 , the zero field intercept can be moved over a range 

given by !:lH,2 , the transition width, times the inverse limiting slope, dT / dH,'2. 

Yet another method involves measuring the susceptibility bf the sample. At T" 

the superconducting sample undergoes a change from the diamagnetic Meissner 

state (X = -1) to the paramagnetic normal state (X~ 10-5). The apparatus used 

in this study is a dual coil AC bridge susceptometer with a variable temperature 

sample holder[24]. This experiment operates at 17 Hz and has a sensitivity limit 

1000 times smaller than the signal caused by the sample transition at T,. The in-

ductive technique examines surface screening currents, so it is not always sensitive 

to ·microscopic inhomogeneities. However, if there is gross segregation in a sample, 

so that the surface properties are different from those at the core, an unrepresenta-

tive T, can result. In the case of the 25% alloy, the inductive measurement shows 
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two distinct transitions, one at 7.6K, and another smaller one at 8.1K, as shown in 

figure 13. The lower temperature one probably corresponds to flux exclusion from 

the a" phase outer layer, while the higher transition is due to flux exclusion from 

the (3 phase core. The· inductive signal should be proportional to the volume of the 

sample which is excluding flux, so the relative transition magnitudes imply that 

about 20% of the sample is (3 phase. None of the other samples shows a double 

transition. 

Figure 14 presents a companson of inductively measured Tc results from a 

number of studies. Tc rises to a maximun of 9.88K at 70 at. % Nb, the same 

composition at which Suenaga and Ralls found a maximum Tc of lOK. In general, 

the present data shows Tc changing smoothly with composition, in contrast to the 

scatter of earlier data. The scatter of this earlier data seems greater than can be 

accounted for by simple thermometer calibration differences. Certainly there can 

be questions about whether the structural state of the samples near Ti25at. %Nb 

are all the same, and this could account for the wide spread of results near that 

composition. This explanation should not hold for the niobium rich alloys, but 

these are precisely the alloys most difficult to homogenize. An additional issue is 

the generic and ~mbstantial problem of oxygen or other in.terstitial contamination, 

' . 
but this argument cannot be pursued fully for lack of sufficient chemical analyses. 

The smooth variation of Tc of the present alloys is believed to result from the care 

and uniformity of their preparation. 
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7 Heat Capacity Measurement Apparatus 

The apparatus used in the heat capacity experiment is shown in figure 15. It 

consists of a sample holder, with thermometer and heater, a thermal weak link, and 

a heat sink. The sample holder is a sapphire wafer 3 em x 1 em x .5 mm, to which 

is varnished a 350 ohm strain gauge heater and an unencapsulated germanium 

resistor. The thermal weak link, made up of several parallel coils of manganin 

wire (100 JJm diameter) also serves as electrical connection to the heater and 

thermometer. The heat sink is a tube of high conductivity copper which is wetted 

on one end with helium at 4.2K. A sample rod is varnished in place with about 5 

mg of GE 7031 varnish, and the entire apparatus is operated in a vacuum of less 

t han 10- • Pa pressure. 

The calorimeter, similar in design to those of Forgan and Nedjat[27] and Lawless 

et aL[28], operates as a relaxation calorimeter. This technique requires that the 

sample and sample holder be in thermal equilibrium as they both slowly drift 

in temperature, in response to heat input or removal. If Cs is the sample heat 

capacity and Ca is the heat capacity of the experimental addenda, then simple 

thermodynamics yields the following: 

(Cs + Ca) = dU/dT (1) 

Since dU /dT is the heat flux into or out of the addenda-sample combination, it 
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t 
\ can be expressed as the difference between Pi, the heat introduced by the heater, 

r- and P 0 , the heat conducted away by the thermal link. The equation then becomes: 

r· 
( 

(2) 

I. From this, it is clear that the heat capacity can be calculated if the cooling rate 
' 

~ 

l 
l 

and heat flow are ·both known. 

[ . 
The term in the equation above which is most difficult to evaluate is P 0 • This 

is because it is the only one whicft can not be monitored during the experiment. It 

r.· is possible to measure the equilibrium sample temperature for a variety of heater 

r 
'-·-

power settings, and thus obtain an .accurate calibration of the heat leak, but the 

process is time consuming. Riegel and Weber[29] combine heating and cooling 

[ 
curves to eliminate the variable P 0 , so that this lengthy calibration process can 

r~- be avoided. The present study also uses this technique, but with different heater 

•' 8 ~, 

I 
power conditions. In the Riegel and Weber study, the heater power was held con-

l 
stant during the heating cycle, and turned off during the cooling cycle, so that 

r_- the drift rate, which was intially high, decreased dramatically near equilibrium. 

r· The accuracy of the measured drift rate deter~orates outside some optimum range, 

~ 
so many staggered measurement cycles were necessary to cover a large tempera-

I 

l ture range. In the present study, heater power was continuously adjusted so that 

I' the difference (P1-P 0 ) was of constant magnitude throughout both heating and 

I cooling cycles. In this way, dT /dt was kept near optimum over a wider range of 
) 
\ . 

) 
\; 

I 

' . 
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temperature. 

If P 0 is the actual heat leak out of the sample and (P o+P e) is the calibrated heat 

leak, containing an error term P e, then the operating equations for the calorimeter 

become the following: 

(3) 

Here, the subscript c denotes a cooling run, h denotes a heating run. Now, the 

experiments are conducted under constant drive conditions, that is: 

Pn = Po+Pe +K (4) 

(5) 

K is referred to .as the drive power. Under these constraints, . equation 3 can be 

reexpressed as follows: 

C(d:I'Idt)n = Pe + K (6) 

C( dT I dt )c = Pe -' K (7) 

Now, combining both heating and cooling information: 

2K 
C= ~~----~~~ 

( dT I dt )h - ( dT I dt )c 
(8) 
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We can define heat capacities determined from either the heating or cooling 

curve alone, Cn and Cc: 

K 
C h = -:-( d-T~/ d....,t ),.-n (9) 

K 
Cc = (dT/dt)c (10) 

These quantities are afflicted by systematic errors due to heat leak miscalibra-

. . 
tion, and are not equal to the actual heat capacity unless P e=O. However, these 

quantities can be substituted into equation 8, for a further definition: 

(11) 

Using these formulae, it is possible to derive the heat capacity and correct for 

systematic errors due to heatleak misca.libration, using a set of heating and cooling 

data taken over the same temperature range. Since the experiment was run under 

consta1~t drive conditions, it was assumed that the magnitude of the heating and 

cooling drive powers were the same. In general, the correction procedure will work 

even if that constraint is not satisfied. 

Because this experiment took so long to run, it was computer operated. As 

shown in figure 16, an Apple II+ computer, equipped with analog inputs and 

outputs, monitored heated voltage, heater current, and thermometer voltage, while 

it controlled heater voltage. Every 1.5 seconds, the heater power was measured and 
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compared with an approximate heatleak calibration, and the heater voltage was 

adjusted to maintain constant drive power. The sample temperature was measured 

every 30 or 60 seconds. Using the $avitsky-Golay technique(30), a nine point 

moving, weighted average of these data was formed, mathematically equivalent to 

the derivative at the center point of a third order polynomial fit to the original 

nine point data group. The smoothed and differentiated data set was used to find 

C5 +Ca as a function of temperature, and this information was saved on disk at the 

end of _each cycle. From several runs with an empty calorimeter, the addenda heat 

capacity was determined to an accuracy of about 3%. In all the measurements in 

this study, the addenda correction constituted less than 20% of the sample heat 

capacity, and so it added less than .6% to the error in that measurement. 

The experiment is based on the assumption that the heat leak depends only on 

temperature and that the sample and sample holder are in thermal equilibrium. 

The first of these assumptions was checked by applying a constant heater power 

and observing long term temperature shifts. Over a period of three days, heatleak 

variation was less than 0.1 %, and over the duration of a typical measurement 

cycle (about. 3 hours), there was no noticible change. The second assumption 

was checked each run , at the sample's transition temperature. In all cases, with a 

temperature drift rate of between 1 and 3 mK/s, the heating and cooling transitions 

occurred within 10 mK of each other. This lack of hysteresis indicates that the 

sample and sample holder are at essentially the same temperature. The absolute 
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temperature accuracy of this experiment was limited by long term drift in the 

thermometer electronics, on the order of 10 p.V /month. This corresponds to a 

temperature drift at 10 K of about 30 mK/month. To correct for this _ effect, 

a high purity, homogenized niobium sample was run every few weeks, and the 

conductance bridge rezeroed to provide a constant transition temperature of 9.25 

K. In all cases, these adjustments caused cumulative shifts of less than 50 mK. The 

standard sample, provided by Teledyne Wah Chang, had an inductive Tc of 9.25 K, 

a transition width of 70 mK, and a residual resistivity ratio of 250. A heat capacity 

measurement was performed on high purity copper (OFHC) at the beginning and 

end of this study. Both sets of data agreed with the copper reference polynomial 

of Osborne et al.(31] to within 3% from 6 K to 30 K. Spot checks against other 

data(32] at 35 K and 40 K were also within 3%. 

8 Transition Temperature Comparison 

The transition temperatures measured calorimetrically on the samples in this study 

are compared with the results of two other studies in figure 17. The error bars 

included illus_trate the 10%/90% widths of each transition. These widths ranged 

from 0.22K to 0.39K, ·and seemed· to be intrinsic, not an artifact of the smoothing 

which preceeds analysis. The widths are roughly the same as those found by 

Sasaki[33], which lends some support to the notion that this breadth is unavoidable 
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even in good quality samples of Nb-Ti. The trend of the present data is smooth, 

with the exception of th~ Ti35at. %Nb alloy, which appears about 0.2K higher than 

the trend. By contrast, the data of Savitskii et al. is quite scattered . Sasaki1s data 

is generally cl.ose to that of the present study, with an anomalously low point at 

Ti65at. %Nb. 

As a final note in the comparison of critical temperatures, table 2 presents all 

the critical temperature information from the present study. The most clearly in-

homogeneous material, the 25 at.%Nb alloy, exhibits a different Tc for each of the 

measurement techniques used. The resistive measure, which senses only the dis-

appearance of the last filamentary superconducting path, gives the highest value 

(8.39K). The inductive measure, which signals the breakup of the sheath of screen-

ing currents on the sample surface, gives the next highest value (8.06K for the f3 

phase region of th'e ·sample) . The calorimetric measure, which records the average 

thermal response of each of the whole sample, gives the lowest value (7. 72K). This 

behavior can be explained if there is a distribution of superconducting properties 

in the sample because it is microscopically heterogeneous. Microscopy and x-ray 

diffraction show that this is true for the 25 at. %Nb sample. It is interesting to 

note that a similarly broad Tc signature shows up in the 30 at. %Nb alloy, which 

shows no diffraction evidence of inhomogeneity. It seems likely that the incipient 

phase instability of this alloy, as evidenced by diffuse w phase diffraction intensity, 

is contributing to the low T, tail seen in the calorimetric T, data. The spread in Tc 
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is definitely smaller for the Ti35at. %Nb and higher Nb alloys, seldom being more 

than O.lK. The disagreement between different measures in this study is much less 

than the disagreement from one study to another, as can be seen by comparing the 

spread of data in figure 14 to that in table 2. This indicates that the discrepancies 

between studies are real, the result of differences in microstructure rather than 

measurement technique. 

9 Extraction of 1 and (:) d 

The standard way to analyze heat capacity data relies on the Debye model for 

lattice specific heat. Using this model, in addition to the free electron model for 

conduction electrons in a metal, it is possible to approximate the material's heat . 

capacity as follows: 

(12) 

Here, Bd is the Debye temperature and 1 the electronic specific heat coefficient. 

This last quantity can be related to the electronic density of states at the Fermi 

surface (if the surface is spherical) in the following way: 

3 
n( € I) = k2 2 I 

b'lf' 
(13) 

Based on this model, a plot of C/T versus T2 should give a straight line with 
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% Nb resistive inductive Hc2 extrapolation calorimetric 

20 7.2±.02 7.08±.04 7.1~±.05 7.02~:~~ 

25 8.39±.09 7 63+·06 
. - .09 8.27±.09 7 72+'22 

. -.17 

8 06+·10 
. - .13 

30 8.91±.03 8.70~:~~ 8.71±.05 8.28~:g 

35 9.16±.02 8.97±.05 9.07±.05 9 16+·21 
• -.08 

40 9.47±.08 9.28±.08 9.23±.05 9 43+•08 
. - .19 

50 9.71±.03 9.67±.06 9.47±.02 9.84~:~: 

60 9.94±.01 9.81±.06 9.88±.02 9 98+·10 
" - .12 

70 10.00±.01 9.88±.07 9.86±.02 9.95~:g 

Table 2: Comparson of Critical Tempe~atures 
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y-intercept 1 and slope related to fh 

The' separation technique outlined above is complicated somewhat in super-

conductors. In these materials, conduction electrons condense into Cooper pairs 

at temperatures below the critical temperature, so the heat capacity of the elec-

tron gas is dramatically altered. Without the benefit of low temperature normal 

state data, the extrapolation to OK is susceptible to error. For the high niobium 

alloys the problem is greatest, because the higher critical temperatures prevent a 

wide range of normal state measurements. The errors in the specific heat data ar~ 

magnified by the extrapolation process, so that a 3% error in C leads to a 12% 

error in 1 if the lower limit of data used is about 9K. Specific heat data for the 

alloys in this study are presented in figures 18 through 25, along with the Debye 

extrapolation of that data. 

In table 3 the 1 and ()d values for each composition are listed. These are based 

on a linear, least squares fit to the data between Tc and 12K, with the errors 

given by the coefficient uncertainty of the fit. Included in the table are entries for 

pure niobium, based on measurements made on the high purity niobium sample 

described on. page 36. These values are within 2% of those derived by Leupold and 

Boorse[35](1=7.38 mJfmol-K2, Od = 241K) from data over the same temperature 

range. 

The data shows a general· trend by which 1 increases from 5.1 mJfmol-K2 

at 20at. %Nb to a peak of 8.6 mJ /mol-K2
, then declining towards the pure Nb 
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( : %Niobium -y( mJ / mol-K2
) Bd(K) 

,~ 

! 
20 5.1±.2 255 

r: 25 5.5±.4 247 

! l 30 8.6± .5 233 

35 6.3±1.0 213 

\( 
40 8.2±.8 224 

~ l 50 5.6± 1.1 231 
t ) 

60 4.2±2.2 231 

I j 
70 3.2±1.3 237 

I ; 
100 7.4±.4 243 L 

J ! 

L' Table 3: -y and Bd Values 
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value of 7.4 mJfmol-K2. ed follows a similar but inverse trend , start ing at 255K 

(20at . %Nb ), reaching a minimum of 213K at 35at. %Nb, and climbing to 243K at 

pure Nb. The trend of {)d is relatively smooth, but this is not the case for the 

'Y values. The 35at.%Nb value is anomalously low, and the steady decline in 1 

from 40at.%Nb to 70at.%Nb (8.2 to 3.2 mJ/mol-K2) requires a significant upturn 

beyond 70at. %Nb in order to reach the pure Nb value. 

In figures 26 and 27, the Nb-Ti alloy results are plotted against those measured 

by Sasaki(33] and by Savitskii et. al.[34), as well as some recent, unpublished work 

by Ho[36). The great scatter in these data is unsatisfactory, making it impossible 

to come to firm conclusions concerning the behavior of 1 across the alloy system. 

In the data of Savitskii et al., which was for years the only data available, 1 ranges 

from 9.2 mJfmol-K2 (20at.%Nb), rises to 10.5 (50at.%Nb), then declines slowly 

to about 10.2 mJ/mol-K2 (75, 90at.%Nb). The four data points of Hoare closely 

spaced from 28 to 37at. %Nb and show 'Y increasing sharply from 8 to 11 mJ /mol-

K2. These data, as well as those of Sasaki, are all higher than the data taken in 

the present study. 

One concern about treating the data within the Debye formalism is that the 

C /T versus T 2 plot exhibits some curvature, as can be seen by examining the 

high temperature Debye plots exhibited in figures 18 through 25. Because of this 

curvature, the y-intercept of any linear fit to the data will systematically increase 

as the temperature range of the fit is increased. The data for 20·, 25, and 30at. %Nb 
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Figure 26: Comparison of Extrapolated 1 Values 
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Figure 27: Comparison of Debye Temperatures 
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are not greatly affected by this curvature; extending the upper limit of the fit from 

12K to 16K only increases the 1 values by a few percent. In contrast, the 1 value 

for 35at.o/flNb is increased 30% by the same change in temperature range. The Tc-

1.6K based"( extrapolation for 40at .%Nb is 10% higher than that based on T,-12K 

data, for 50 and 60at. %Nb the increase is 20%, and for 70at. %Nb, the increase is 

over 60%. Clearly, the range of data used can have a large effect on extrapolated 

"f values for these alloys, but there is no precise way of determining the correct 

range. Since the Debye model is most reliable at low temperatures, and because of 

noticible curvature of the Debye plots, only the lowest temperature extrapolations 

(T,-12K) will be used. 

Another of the difficulties involved in extracting reliable 1 values is illustrated in 

the work of Sasaki[33], where, for a variety of compositions, the normal state Debye 

plots exhibit a kink at low temperatures. These measurements, made in a magnetic 

field in order to depress Tc, show a clear change in slope of the Debye plot at a 

temperature which varies with composition from about 6K to BK. Extrapolations 

based on data below this kink temperature (designated "low T" data in figure 

26) lead to values of 1 much lower than those derived from higher temperature 

data (designated "high T" ·data). A similar anomaly has been noticed in pure 

niobium[35], but the direction of the kink was the opposite of that found by Sasaki, 

so · the effect was to elevate, rather than depress, the OK intercept of the De bye 

plot. 
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Since superconductivity is an ordered electronic state, there is no latent heat of 

transformation to the normal state, in the absence of a magnetic field. This means 

that the entropy of the normal state and the superconducting state are equal at 

the critical temperature, and this fact can be used to check the consistency of the 

extrapolated normal state data. The entropy of the superconducting state can 

be obtained by integrating the function C/T from OK to T,. Since no data is 

available at temperatures below about 6K, ii is assumed that C/T is proportional 

to T 2 and goes to 0 at OK. As can be seen in figures 18 through 2.5, this assumption 

is reasonably accurate. In any case, the higher temperature region (where data. 

is available) weighs more heavily in the entropy integral. Roughly speaking, the 

total error in the calculation should be less than 10%. The entropy of the normal 

state can be determined by integrating the Debye equation up to T,. These two 

entropies, Ss and Sn, are listed in table 4. 

The agreement between Ss and Sn is satisfactory for 5 samples (20, 25, 30, 40, 

and 100a.t.%Nb) but less good for 4 (35, 50,60, 70a.t .%Nb) where Ss-Sn is of order 

20-30% of S. In the latter cases, Sn is significantly lower than 85 • Whether this is 

because the Debye extrapolation does not accurately model the low temperature 

behavior of these samples, or because there are errors in the experimental data is 

not clear. An upward kink in the normal state heat capacity below T,, such that 

1 wa.s higher than expected, would reduce this discrepancy, but only calorimetry 

in a. magnetic field can generate the data n·ecessa.ry to verify this. 
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% Niobium Ss(mJ /mol-K2
) • 

20 51.4±5.1 48.6±1.4 2.8±6.5 

25 68.7±6.9 62.3±3.1 6.4± 10 

30 98.2± 9.8 100.3±4.1 -2.1± 13.9 

35 137.3±13.7 108.9±9.2 28.4±22.9 

40 133±13.3 126±7.5 7±20.8 

50 124.7±12.5 105.3±10.8 19.4±23.3 

60 119.5±12 94.2±22 25.3±34 

70 108.6±10.9 79.6±12.9 29±23.8 

100 98.3±9.8 104±3.7 -5.7±13.5 

Table 4: Entropies at Tc of Normal and Superconducting State 
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10 GLAG Predictions 

According to the GLAG theoryf37], there is a relationship between the normal 

state resistivity, electronic density of states, and dHc
2
/dT for a superconductor. 

The equation is as follows: 

(MKS) (14) 

Using this equation, it is possible to predict 1 from resistivity and Hc
2 

data. 

Figure 28 presents a comparison of the GLAG prediction of 1 to the value de-

termined using a Debye extrapolation. The agreement between these values is 

quite rough, and particularly poor in the high niobium alloys. There, the GLAG 

equation predicts that 1 should increase slowly as niobium concentration increases, 

while the Debye extrapolation implies that 1 decreases substantially over the same 

range. 

11 WHH Theory 

The WHH theory of Hc2 is based on a gauge invariant solution of the linearized 

Gorkov equation for the superconducting gap energy(l]. there are two fundamental 

parameters in the theory; a the paramagnetic limitation parameter, and A5o the 

spin-orbit scattering parameter. These are defined as follows: 



Atomic  Percent Niobium 

Figure 28: Comparison of GLAG Prediction and Debye Extrapolation 
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3h 
a=--..,..-

41rmv]r 
(CGS) (15) 

2h 
.A so = ---::-----

61r2khTcrso 
(CGS) (16) 

Here, m is the electron mass, VJ is the Fermi velocity, r is the t ransport scat-

tering time, T, is the critical temperature, and Tso is the time between scattering 

events which allow elect ron spin flips. Additionally, the variables of magnetic field 

and te~perature are converted to reduced variables using these definit ions: 

_ 2ev}r 
h = 6 k T H,2 

1r'C b c 

t = TfT, 

(CGS) (17) 

(18) 

Though the derivation is carried out for arbitrary mean free path, this general 

equation cannot be solved analytically. T he most often quoted and used formula-

tion is valid only in the limit of short mean free path, and is expressed as follows: 

In t = w(l/2) _ r~ + Aso] if![~ + Y - X] _ r~ _ Aso] if! [~ + Y +X] 
2 8X 2 t 2 8X 2 t 

(19) 

Y = (h/2) + (Aso/4) 

The digamma function, if!( x) is a standard function , defined as the logarithmic 

derivative of the gamma function . The restriction on mean free path is simply 
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I : 
that kbTc ct: h/27rr. An additional restriction is placed. on one integral in the 

r; 
' ) 

general equation, but the physical significance of this restriction is not obvious. 

r 
'.J 

An appendix to the WHH paper shows that the restriction can be satisfied when 

r <t: T,0 if the effects of orbital diamagnetism are ignored, but it is not clear 

r·r 
'.I whether or not it can be satisfied for larger spin-orbit scattering rates. 

n There are a few assumptions built into the WHH theory by virtue of its reliance 

~~ 
on the Gorkov equation. The first of these is that the Fermi surface is spherical, so 

that the use of an average Fermi velocity is physically sensible. The next is that 

0 the scattering of quasi-particles can be described with a classical approach, and 

u their trajectories are not affected by the applied magnetic field between scattering 

events. This is satisfied if ( eh/21fm) ct: kbTc + h/27rT. The scattering centers 

[J must be dilute and uncorrelated, that is, they must act independently, so that 

rJ the aggregate effect of these scatterers is simply the sum of their individual effects. 

f"l __ ; 

Only the most likely types of scattering events are considered, so it is assumed that 

all others have negligible probability of occurance. The probability of these unlikely 

u events is estimated by Gorkov[38], and he states that they should be unimportant 

u if krl )> 1. This restriction is not exact, but rather gives a general idea of the 

range of applicability of the equation. Finally, two assumptions are made about the 

L phonon mediated attraction between electrons. One is that the Coulomb repulsion 

); 
~......J 

between electrons is screened by the electron gas, and that the screening is static, 

c i.e. , it can be treated using a psuedopotential in place of the Coulomb potential. 

u 
• 1 - --- -- ··--
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The other assumption is that the strength of the attractive interaction does not 

depend on the energy or wav~vector of the phonon intermediary. 

As a practical equation, the form quoted in equation 19 has some drawbacks, 

since all the parameters are determined by microscopic quantities, such as v1 and 

r. However, in the limit t --t 1, dh/ dt for this equation equals a constant, 4/7r2 . 

Experiments indicate that superconductors exhibit constant dHc2 /dT near Tc, so 

it is usual, and indeed recommended in the WHH paper, to define an empirical 

reduced field h, such that: 

dt 1-+1 dt 1-+1 
= (20) 

dh dh 

Thus: 

(21) 

If we compare equations 17 and 21 we find that: 

(CGS) (22) 

Or, rearranging into SI units: 

(MKS) (23) 

Thus, the paramagnetic limitation parameter becomes: 
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(MKS) (24) 

Another. way to link the WHH parameters to macroscopic quantities is through 

the Boltzmann equation: 

!J (MKS) (25) 

Here, p is the resistivity and S is the Fermi surface area, which is proportional 

to conduction electron density. this equation is valid for systems with a spher-

ical Fermi surface in which only elastic scattering occurs. The first assumption . 

is already required by the WHH derivation, so only the second is an additional 

[! constraint. the Boltzmann equation alone is not useful, since although it relates v1 

and r to p, a measureable quantity, it also introduces another microscopic param-

[l eter, S. To eliminate S, it is helpful to use specific heat information. Recall that 

the low temperature heat capacity of a free electron gas is related to the electronic 

density of states in that material as follows: 

L! (26) 

In this equation, n( e 1) is the Fermi surface density of states and 1 the pro-

portionality constant of that part of the specific heat which depends linearly on 

temperature. Since the Fermi surface area ,S, is equal to 4'KkJ, and n( e 1) equals 
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4mkJI h for a spherical Fermi surface, this can be reexpressed: 

(27) 

If this equation is combined with equation 25, the result is as follows: 

v]r = 7.33 x 10-8 /'YP (MKS) (28) 

This re~ation can be used along with the definition of ato give: 

a = an = 2368"(p (MKS) (29) 

These calculations show that there are two methods for determining a, either 

using equation 24 or equation 29. The first of these is refered to a.~ a 5 , the para-

magnetic limitation parameter determined from superconducting measurements, 

. while the second is labled an, since it is derived from normal state measurements. 

12 Extension of the WHH Treatment 

The results above come from a nearly free electron model of the superconductor, 

where the electron-phonon interaction simply provides an effective potential in 

which the electron moves. Such a. one electron treatment neglects many body 

interactions, but it is possible to include some of these effects in the context of the 

WHH theory. According to Migdal[39], perturbation theory can accurately account 
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for the t ime dependence of the electron-phonon interaction, and this effect can be 

incorporated into the WHH formalism through the use of a renormalized electron 

mass. This renormalization factor, 1 + Aep, is given by the following integral[40]: 

(30) 

Here, a 2(w) is the electron-phonon interaction matrix element and F(w) is 

the phonon density of states. According to Grimvall(41], renormalization affects · 

microscopic properties in the following way, with starred quantities representing 

renormalized variables: 

(31) 

(32) 

(33) 

. 
Dimensional analysis of a,from equation 15, shows that it is invariant under 

this electron-phonon renormalization, i.e., a(m,VJ,T) = a(m*,vj,r"). Since vr and 

r are determined from experimental quantities, either through equations 23 or 28, 

they are renormalized quantities. This means that to get correct values of a, the 

renormalized electron mass, m*, must inserted into equations 24 and 29, so that: 

(34) 
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(35) 

It is possible to determine Aep using one of two schemes. The first involves 

measuring a quantity affected by the electron-phonon renormalization, such as the 

specific heat at low temperature, and comparing it to the value predicted by band 

structure calculations. Unfortunately, band structure calculations for solid solution 

alloys are complicated, and have not been done for Nb-Ti. Thus, for the Nb-Ti 

system, this first approach is unhelpful. Another, more indirect technique makes 

use of one of the many equations relating T, to electron and phonon parameters 

of a material. One of these theories, proposed by Allen and Dynes[42] states that 

T, is given by: 

T 
Wt . -1.04(1 + Aep) 

, = - exp -:----+--~~ 
1.2 Aep- J.L•(1 + .62.Aep) 

(36) 

Here, J.L .. is a Coulomb pseudopotential and Wt is an average phonon frequency 

defind as: 

1 
f a2(w )F(w) ln wd(ln w) 

- ogwt = fa2(w)F(w)d(lnw) (37) 

The development of the pseudopotential used in the theory above is the sub-

ject of some debate. It is one of the parameters in the Eliashberg gap. equation, 

and constitutes an electron-electron renormalization factor analogous to the on·e 
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used to treat the electron-phonon interaction, as outlined above. Though in prin-

ciple it can be calculated, there is no adaquate perturbation treatment of the 

problem[40], so usually this parameter is extracted from analysis of tunnelling 

data[43]. McMillan[44] advanced qualitative arguements to show that, for most 

BCC elemental transition metals, !-'" should be .13. A later solution to the Eliash-

berg equation[45) tabulated tunnelling values of J.L\ as well as values resulting 

from numerical solutions to the gap equation. For many of the elements and alloys 

studied, there was only rough agreement between these two measures, perhaps 

to within 30 or 40 percent. Indium, tantalum, niobium, and lead all had values 

within 30% of the suggested .13, and the Pb-Bi and In-Tl alloy systems showed 

no systematic variation with composition. For the Nb25at. %Zr alloy, tunnelling 

measurements suggested J.L* ~ .1, while gap equation solutions implied that .18 was 

the correct value. In summary, the d-eterminants of 1-'" are not well understood, 

and thus only approximate estimates can be made. For the purposes of this study, 

1-'• is set equal to .13, with a probable error of .03. 

The extensions outlined above were used by Orlando et. al.[4][46] to analyze 

the H,
2 

behavior of Nb3Sn and V 3Si, which were not accurately described by the 

original WHH theory. The revised theory modeled the temperature dependence 

of H,
2 

for V 3Si better than the original, and avoided the problem of unphysically 

large ~so values in the description of Nb3Sn. These studies also introduced some 

further renormalization parameters to account for the effects of spin waves and 
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strong coupling, but they are not very important for the treatment of Nb-Ti. 

Thus, only corrections that can be incorporated into the parameters Aep and J.L,. 

will be included in the present study. 

At first glance, it seems that the Allen and Dynes Tc equation provides no 

help in evaluating the revised WHH expresions. Though it relates Aep to Tc, it 

also introduces other parameters; p.", which is known only approximately, and Wt, 

which depends on the same a 2 F( w) function that Aep does. A close examination of 

the definition of w~_ (equation 37) shows that while Aep depends directly on a 2(w), 

Wt contains this term in both numerator and denominator, so only the frequency 

dependence of this function need be considered. In developing their theory, Allen 

and Dynes assumed that a 2(w) was independent of frequency. They found that Wt 

calculated on this basis, in combination with measured Tc's, generated Aep values 

which agreed well with the few data available from tunnelling measurements. Later 

measurements on A15 compounds (4 7] indicated that agreement with tunnelling 

experiments was possible only if a 2 ex: 1/ jW. Other measurements on Chevrel 

phase materials[48] indicate that a 2 ex: 1/w. The function seems to depend weakly 

on frequency, and generally to increase with decreasing frequency. It also seems 

to exhibit the same frequency dependence for an en.tire class of materials with 

the same crystal structure. Since the Nb-Ti system is a BCC metal, like many 

of the elemental materials studied by Allen and Dynes, it is assumed that a 2 is 

approximately constant. 
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The crux of these extensions of the WHH theory is the determination of the 

phonon density of states, F( w ). From this, and the assumed frequency dependence 

of a 2
, it is possible to calculate w~_. This quantity, when used in the Allen and Dynes 

equation along with a measured Tc andan assumed J.£*, in turn defines ..Xep, which 

is used to renormalize the WHH paramagnetic limitation· parameter. 

13 The Harmonic Lattice Approximation . 

From the heat capacity data, it is clear that the Debye model does not well repre-

sent these alloys in the region above 15K, so another approach is needed to examine 

this high temperature data. A more general model of the thermal properties of a 

lattice treats it as an ens~mble of harmonic oscillators. The heat capacity, in this 

harmonic approximation, is given by the integral: 

(38) 

Subject to the condition: 

loco F(w )dw = 1 (39) 

In these equations, F(w) is the phonon density of modes, x=w/T, and both w 

and T are expressed in Kelvins (h = ko = 1). From this, Chambers{49] showed 

that a family off unctions of the heat capacity are related to F( w) as follows: 
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(40) 

He showed that, though this integral cannot be solved analytically, it can be 

used to generate an approxim~tion to the function F( w) from data on heat capacity 

as a function of temperature. If the term F( w )/ wn is treated as a set of discrete 

steps, constant over some range of frequencies, this equation becomes: 

(41) 

(42) 

Here, Xi are defined by the limit frequencies, Wi, which subdivide the frequency 

spectrum, gi are the discrete values of F(w)fwn over the range i, and Bn is simply a 

shorthand for the integral part of the equation above. This equation illustrates that 

the 'problem- of determining the values gi reduces to finding a least-squares fit to 

C/Tn+l using the basis functions Bn. Fi.nding such a fit is mathematically possible 

for any value of n, but the accuracy and uniqueness of the fit depend on whether 

the basis functions are orthogonal or not. Since the definition of orthogonality 

for rational functions requires that there be rio "overlap" of the functions, it is 

clear from figure 29 that the Bn functions are not the ideal sort to use as basis 

functions. The n= O funct ion has a full width at half maximum (in log space) of 

about 1.9. This means that each g1 value would have to span a range of about 4:1 
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in frequency (x, = 4Xi-1) for the basis functions to be sufficiently independent to 

make the fitting process well behaved. If higher order B functions are used, this 

averaging range is reduced, but the functions narrow quite slowly with increasing 

n. In the interest of physical comprhensibility, this study will make use of the B2 

functions. They are sufficiently narrow to allow gi averaging over just one octave 

(xi = 2Xi-1), and represent the same spectrum, wHhin each octave, as the Debye 

model. Using these specifications,. the fitting equation is: 

C(T) J r,. s er 
~ = 3R~gi f ri-t x (er -1)2d(lnx) (43) 

The frequency bands are defined by the following limit frequencies: 

Wo = 1K w1 = 25K w2 = SOK 

w3 = lOOK W-t = 200K w5 = 400K 

The lowest energy spectral band in this model is not easily determined through 

the use of the fitting proceedure described above. This is because these phonon 

energies (below 20K) most strongly affect the heat capacity at temperatures about 

one fifth as high, as is expected, since the B2 function peaks at x=4.93. However, 

since no data is available at such low temperatures, and since the coefficient of this 

lowest octave only weakly effects the data at higher temperatures that is available, 

this parameter is not freely varied, but rather fixed using a Debye extrapolation. 

This is possible if we compare the Debye integral to a form of equation 43 in the 

limit case i=l. These integrals are: 
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Figure 29: Heat Capacity Inversion Basis Functions 
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(44) 

( 45) 

From this comparison, it is clear that if g1 is set equal to 3/0~, it is the same 

as approximating the lowest frequency modes in the sample with a Debye model. 

For a similar reason, 1 can not be assigned accurately using this procedure; the 

electronic component of the heat capacity is a small contribution to the total over 

most of the temperature range for which data is available. Thus, both g1 and 1 

are assigned values based on the low temperature Debye extrapolation. The rest 

of the parameters are adjusted to minimize the residuals of equation 43 over the 

temperature range T,-.50K. 

The low frequency cutoff at w0 , which makes integral computation easier, causes 

·insignificant error in the B2 function, and certainly does not introduce errors into 

the model heat capacity greater than the experimental error in the data. The high 

frequency cutoff at w5 ( 400K) is necessary for normalization, and should not cause 

any loss of information in the final spectra. In the case of pure niobium, there is no 

significant phonon state density above about 330K[44], and the Nb-Ti spectrum 

at high temperature should be similar. 

The requirement that F(w) be normalized (equation 39) is not explicitly en-

forced by the least squares fitting procedure, but it i.s encouraged by padding the 
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data set with an artificial point at high temperature with the lattice heat capacity 

equal to 3R. In this way, deviations from the normalization condition affect the 

residual error of the fi t, and thus drive the procedure towards normalization. 

It must be recognized that, for fundamental reasons, any inversion of heat 

capacity data will generate only a general picture of the actual phonon density of 

states. However, the main limitation of this technique is it's low resolution; thus, 

although detailed structure is lost , the trends and relative frequency weights of the 

spectrum as a whole should be well represented. Work by Lachal et al.(48] indicates 

that reliable phonon averages can be determined using this procedure even if the 

details of the model spectra do not accurately reflect t hose of the actual system. 

Table 5 presents the fitting coefficients for each of the alloys as well as the 

normalization constant , calculated from equation 39. Ideally, this latter quantity 

should be equal -to 1, but for the 35%, 40% and 70% niobium alloys it is closer to 

1.5. This may be a sign that the electronic heat capacity has been underestimated 

for these alloys, forcing the fitting routine to increase the phonon density of states 

at higher temperatures to compensate. All but the 70% alloy show a higher density 

of phonons in the 5 to 10 meV energy range (50-lOOK) than would be expected 

from a simple Debye model, with the greatest enhancement in the 35% alloy. The 

spectrum of the 70% alloy is most enhanced at even lower energies (25-SOK). The 

general trend is fo r the phonon density of modes at lower energies to b~ increased 

beyond that of the Debye spectrum, and that at high energies to be reduced. 
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N 

(mJ/mol-K2) (6-25) (25-50) (50-100) (100-200) (200-400) 

5.0 1.81 1.79 1.92 1.42 .305 .95 

5.0 1.99 1.78 2.34 1.46 .332 1.03 

8.8 2.37 2.19 2.70 1.43 .331 1.03 

7.5 3.11 2.89 3.63 1.11 .589 1.46 

.. 
8.6 2.68 2.40 3.13 1.44 .379 1.46 

5.8 2.45 2.26 2.81 1.43 .459 1.26 

5.2 2.39 2.26 2.63 1.62 .405 1.21 

4.7 2.25 2.54 2.17 1.41 .570 1.45 

all g values multplied by 107 

Table 5: Lattice. Heat Capacity Fit Parameters 
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14 Predicted and Measured Critical Fields 

Using the data. and equations presented in the previous sections, it is . possible 

to calculate WHH predictions for each of the Nb-Ti alloys in this study. First, 

the phonon density of states can be combined with equation 37 to calculate Wt, 

· the average phonon frequency, for each sample. This calculation is based on the 

assumption, discussed earlier, that a 2( w) is constant. Then, with T" Wt 1 and 

a.n assumed 1-£", the Allen and Dynes equation yields Aep, the electron-phonon 

coupling constant. The T, derived from the H,2 extrap'?la.tion to H==O seems most 

appropriate for use in this calculation. Finally, equations 29 and 24, together with 

the resistivity dHc2 /dT, and "'( data previously presented determine an and a s. 

These results are listed in table 6. 

The primary problem illustrated by thi.s analysis is that the a values determined 

by superconducting measurements and normal state measurements do not agree. 

Such behavior has been noticed in Nb-Ti before[23], although not over such a wide 

range of compositions. It is possible that this is because the Boltzmann equation, 

used in the determination of an, does not ·accurately describe the Nb-Ti system. 

This equa.tion is valid when the fermi surface is spherical and only elastic scattering 

occurs. Typically, umklapp processes are frozen out at low temperatures, because 

thermal energy is insufficient to excite phonons with a large enough k vector to 

cause zone to zone scattering. In the niobium based alloys, however, the soft 
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< 111 > phonon can be excited with very little energy, and this mode may be able 

to cause inelastic scattering. 

In an attempt to decide which of these two measures of a were more meaningful, 

each was used to generate a fit to the H,2 (T) data with the WHH equation. These 

fits are plotted along with H,2 data for each of the alloys in figures 30-37. The 

spin-orbit scattering parameter, A501 was varied freely in this process, to minimize 

the RMS deviation from the data. For the a 5 based fits, this worked rather well, · 

and the Aso corresponding to the best fit is also listed in the table. However, the 

Hc2 behavior of only one alloy (70%) could be fit using the an values; all other 

fits showed significant discrepancies. The fits based on a 5 generally indicated that 

spin-orbit scattering was negligible, nearly zero in all cases but the 70% alloy. For 

the 60% alloy, it was not possible to accurately fit the low temperature data, since 

even with A50 set equal to zero, the WHH predic~ion was .6T too high at 2K. 

The errors in this fitting procedure result solely from errors in determining a, 

and these are dominated by the error in JJ* used in the Allen and Dynes equation. 

As a result of sensitivity analysis of this equation, it appears that for the range 

of parameters found in the Nb-Ti system (T, ~ 9K, Wt. ~ 170K), the variation in 

Aep due to Jt* is about 1/3 the percentage error in JJ*. Since the uncertainty in 

Jt,. is about 30-40%, and thus the uncertainty in Aep is around 10%, then a can 

only be determined to about 5%. On this level of accuracy, the H,2 data for the 

samples with 20% to 50% niobium can all be described by assuming that there is 
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20 166 .85 .42 .74. .3 

25 165 .91 .48 .89 .1 

30 159 .95 . 77 .88 0 

35 174 .93 .56 .81 .1 

40 160 .98 .56 .76 .05 

50 ] 71 .96 .31 .66 .1 

60 167 .99 .31 ,55 0 

70 186 .94 .16 .41 10 

Table 6: WHH Fit Parameters 
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no spin-orbit scattering. The 60% niobium alloy data cannot be described well at 

low temperatures, and the 70% niobium alloy can be· fit only if appreciable spin-

orbit scattering is assumed. The.re does not seem to be a. sensible explanation for 

this erratic behavior of the high niobium content alloys. 

Another interesting point to note is that the alloys in this study, especially the 

high titanium compositions, are almost localized . One measure of the degree of 

localization is the product krl, which can be reexpressed as (mvJih)( VJT), which 

in turn is equal to 3/2cx. This value can be as low as 1.5 for the studied alloys , 

which indicates that they are weakly localized. Localization effects are certainly 

not included in the WHH treat ment, even with renorma.lization corrections. The 

effect of this weak localization on Hc2 is not clear for a bulk material, and is perhaps 

worth further consideration. 

In summary, renormalization corrections to the WHH theory significantly change 

the description of the Hc2 behavior of Nb-Ti. While the alloy is conventionally 

treated as a paramagnetically limited material, the revised theory indicates that 

paramagnetic limitation is not of major importance. Thus, enhancements in Hc2 

that result from ternary additions of tantalum to the Nb-Ti base alloy are unlikely 

to be due to relaxation of paramagnetic constraint. Such constraint does not ac-

tua.lly exist in the binary alloy, but only appears to because renormalizations are 

ignored. Further, one of the equations embedded in the WHH derivation, relating 

1, Pn, and dHc2 / dT, is not satisfied for the a lloys studied. This equation, known 
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in one form as the Goodman equation, is quite inaccurate over the whole composi­

tion range, especially so in the niobium rich alloys. This is perhaps due to the soft 

phonon mode present in niobium alloys, which could render invalid the Boltzmann 

equation used in the derivation. 
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