Fracture in ITER and HEP Nb₃Sn strands under bending at 77 K

M.C. Jewell^{1,2}, A. Nijhuis³, P.J. Lee¹, D.C. Larbalestier¹

¹Applied Superconductivity Center, NHMFL, Florida State University ²University of Wisconsin – Madison ³University of Twente

Funding:

6

U.S Dept. of Energy (DE-FG02-07ER41451, DE-FG02-06ER54881)

Samples and testing: J. Parrell, OST; A. Vostner, F4E; Y. Takahashi, JAEA; Y. Miyoshi, Twente

Motivation

- Motivating question: how does the size and arrangement of the filament pack affect fracture?
- **K** Technique: Bend testing at 77 K

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Sample set

bronze

Internal tin

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University — HEP strands —

Internal tin

Bend testing

- 1 cm-long samples were mounted in AI clamps with a variety of radii and bent at 77K to 0.5%, 1.0%, 1.5%
- Samples removed from clamp after warming and longitudinal face hot-mounted, ground, and polished to 0.05 μm
- Samples etched in 37% HNO₃, 13% HF for ~5 sec. to reveal crack location – but not enough to create false voids.
- Images acquired over > 1 cm length on field-emission scanning electron microscope and/or scanning laser confocal microscope

	Cu			Nb		
Temp (K)	E [GPa]	σ _y [MPa]	ΔL/L (%)	E [GPa]	σ, [MPa]	ΔL/L (%)
293	128	48.5	0	105	50.5	0
77	136	75.4	-0.285	108	96	-0.127
4.2	137	86.2	-0.334	110	194	-0.148
Deviation from 4.2K value at 77K	1%	13%	15%	2%	51%	14%
	Та		Nb ₃ Sn			
Temp (K)	E [GPa]	σ _y [MPa]	ΔL/L (%)	E [GPa]	σ, [MPa]	ΔL/L (%)
293	180	265.9	0	135		0
77	186	457	-0.123	123	2227	-0.143
4.2	188	874.3	-0.152	100		-0.185
Deviation from 4.2K value at 77K	1%	48%	19%	23%		23%

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

M.C. Jewell ASC 2008 - slide 4 of 15

Bend testing – OST @ 1.5%

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

M.C. Jewell ASC 2008 - slide 5 of 15

Correlated fracture events

Bend testing at 1.5% – comparison

- Direct comparison of relative fracture propensity
- Fracture is more collective in the internal Sn strands
- Filament fracture density is highest in the Oxford strand

% filaments cracked						
EAS	1.8%					
MIT	3.4%					
HIT	4.6%					
OST	12.1%					

Theses values scale with the localization of fracture in the TARSIS test

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

M.C. Jewell ASC 2008 - slide 6 of 15

Bronze bend test fracture distributions

- Both strands have very similar onset of irreversible damage around 0.7% bend strain, relative to the geometric wire center.
- ***** The distribution shape is very similar for both strands
- EAS shows almost no cracking in under-reacted sample; HT shows significant cracking, but same shape to distribution

Internal tin bend test fracture distributions

- MIT has a bronze-like distribution of fracture events, with an onset near 0.7%.
- ***** The MIT distribution is "flatter", presumably due to the collective cracking observed.
- Solution OST has an earlier fracture onset around 0.5% bend strain. This is consistent with a Griffith fracture criterion view of the system.

All bend test fracture data

Complete fracture results for 1.0% and 1.5% bend strain										
Bend radius (%)	Strand	HT	Crack count	Sampled area (mm²) inside diffusion barrier	Fraction of Nb ₃ Sn inside Diffusion barrier	Cracks/mm² of Nb ₃ Sn	Cracks/filament			
1.0	EAS	Full	4	8.36	0.319	1.5	0.0%			
1.0	Hitachi	Full	28	8.16	0.369	9.3	0.3%			
1.0	Mitsubishi	Full	7	7.48	0.325	2.9	0.1%			
1.0	Oxford	Full	10	7.96	0.401	3.1	0.3%			
1.5	EAS	Short	1	5.31	0.198	0.9	0.0%			
1.5	EAS	Full	150	6.83	0.319	68.9	1.8%			
1.5	Hitachi	Short	410	5.39	0.309	246.0	3.7%			
1.5	Hitachi	Full	514	6.85	0.369	203.3	4.6%			
1.5	Mitsubishi	Short	131	7.62	0.307	56.0	1.0%			
1.5	Mitsubishi	Full	463	7.24	0.325	196.8	3.4%			
1.5	Oxford	Short	56	4.70	0.201	59.4	1.8%			
1.5	Oxford	Full	374	6.14	0.401	151.8	12.1%			

No significant cracking at 1.0% or 0.5% bend strain.

- Clear trend of less cracking with less HT (even when normalized to A15 area) in EAS, MIT, OST.
- Hitachi is the interpretive challenge –cracks the most (on a normalized basis) in bend testing. Normalized crack density actually increases with reduced HT.
 - Not so much of an outlier on a cracks/filament basis
 - Remember that cracks are well-distributed, which is key to minimizing I_c degradation

Bend testing @ 1.5% – HEP strands

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

M.C. Jewell ASC 2008 - slide 10 of 15

Bend testing – HEP strands

OST-3000 @1.5% bend strain

- Closer look reveals multiple correlated fracture events
- Cracks from both directions
- 1.0% still shown fracture to near the neutral axis (dashed line) clear "threshold" behavior

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

OST-3000 @ 1.0% bend strain

Comparison to uniaxial tension – EAS ITER strand

0.0% strain

0.7% strain

- 4 K uniaxial tension test (H = 0; I = 0) in 0.1% strain increments
- Essentially no fracture events in the strand from 0.0% 0.7%!

Florida State University

This is the kind of "toughness" we would like to build into every strand The Applied Superconductivity Center The National High Magnetic Field Laboratory

Uniaxial tension – Oxford ITER strand

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

M.C. Jewell ASC 2008 - slide 13 of 15

OST longitudinal cracking summary

- Crack density scales exponentially with tensile strain we can estimate the true 3-d density of cracks
- Onset agrees (to within 0.1% or so) of onset from NIST Walters spring data
- ***** The fracture onset and trend is consistent with the bend test data

Implications for strand design

- **Fracture is a tensile strain phenomenon: so stay in compression!**
 - Cable design
 - Strand strengthening
 - More strand pre-compression
- **Filament size matters...if they are small already:**
 - For ITER strands, filament size is small enough that further size reductions are likely to be beneficial
 - For HEP strands, filament size is not likely to reduce crack initiation, but could reduce stress concentrations
- **Filament agglomeration is important: so separate the filaments/sub-bundles**
 - **K** ITER IT strands could eliminate agglomeration with some additional design work
 - **HEP** strands could have larger spacing between sub-bundles

M.C. Jewell ASC 2008 - slide 15 of 15