Modes of Strand Damage Observed by Magneto-Optical Imaging and Metallography

A. A. Polyanskii, P. J. Lee, M. C. Jewell, D. C. Larbalestier Applied Superconductivity Center, NHMFL, FSU

> E. Barzi, D. Turrioni, A. V. Zlobin *FNAL*

This work was supported by the US Dept. of Energy, Office of High Energy Physics under grant DE-FG02-07ER41451 and ITER contract (ITER-CT-07-012)

ASCIO8

Motivation

- Many factors degrade the performance of Nb₃Sn strands:
 - **« Plastic deformation during cabling**
 - **& Lorentz force during operation at high field**
 - **« Precompression during magnet fabrication**
- In this study, the impact of cabling deformation on Nb₃Sn strand microstructure and properties under controlled conditions has been simulated using rolling (performed at Fermilab).

ASCIO8

Summary of Microstructural and Property Measurements Reported Here

Microstructure

& Scanning Laser Confocal Microscopy (SLCM)
& Field emission SEM

Spatially Resolved Superconducting Properties

Magneto-Optical Imaging (MOI)

- *** Electromagnetic measurements:**
 - $\ll I_{\rm c}$, $T_{\rm c}$ and magnetization measurements

Principle Of Magneto-optical Imaging

Magneto-Optical Experiment on Nb₃Sn Strand

1.0 mm

ASCI08

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Polyanskii 3MC08

SAMPLES

Strands manufactured by: Oxford Superconducting Technology (OST) IT- Internal Tin strands RRP - Restack Rod Process,

 ShapeMetal Innovation (SMI), PIT - Powder-In-Tube
 Sample Conditions Examined
 Virgin (round 1 mm) strands
 Strands Flat-Rolled down a maximum reduction of 50% strand thickness.

ASCIO8

SAMPLE DESCRIPTION

Strand ID	PIT	RRP
Billet ID	187	8195-97
No. of filaments	192	108/127
Strand diameter, mm	1.0	1.0
Alloying Element	Та	Ti (Nb-47Ti rods)
lc(12T, A)	~700	~900
Deff, μm	45	84
Geometric filament size, µm	50-57	64-75
RRR	250	300
Twist pitch, mm	20	12
Cu fr., %	52	49

ASCIO8

Cross-section of Virgin 1 mm Diam. PIT

ASCIO8

Cross-section of Virgin 1 mm Diam. IT (RRP)

ASCI08

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Polyanskii [|]3MC08

MOI at T=12 K and H=0 (after FC in H=120 mT)

MO images of trapped flux

ASCI08

PIT

RRP

PIT ROLLED TO 0.8 mm : OPTICAL AND MO IMAGES at T=12K, H=0

H=0, FC in H=120 mT

No damage to filament integrity observed by microscopy filament MO shows no significant variation in properties from filament to filament

ASCIO8

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Polyanskii [|]3MC08

IT RRP Rolled to 0.8 mm: MO T=12 K, H=0

MO shows damage to both outer and inner sub-elements

ASCI08

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

100 µm

IT RRP Rolled to 0.8 mm : Cross-Section

Subelements not broken but some Sn leakage observed by color contrast

LSCM/LED -confocal image with Sn-rich Cu enhanced with green tint

ASCIO8

IT RRP Rolled to 0.8 mm: SEM of Sub-Element

SEM image of single subelement, after deep etching

ASCIO8

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Polyanskii [|]3MC08

PIT Rolled to 0.6 mm: Color & MO: T=12 K, H=0

« Only a few central filaments have been broken by the rolling. **& But all the** superconductivity in those filaments is lost at 12 K

ASC|O8

When PIT filaments break . . .

PIT Rolled to 0.6 mm

LSCM+color enhanced to shows Sn leakage

ASCIO8

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Polyanskii ³MC08

Detail from PIT Rolled to 0.6 mm

ASCI08

PIT Core Components Change After Rolling

ASCI08

RRP Rolled to 0.6 mm: Color & MO: T=12 K, H=0

Broken subelements along shear planes

Low *T*_c subelements with partially reacted Nb (Sn loss from subelements)

MO shows two types of defects in RRP1

MO Shows T_c Reduction in Sub-Elements that are *Not* Damaged in this Cross-Section

T=12 K

T=6 K

Unreacted Nb Filament Cores In Low T_c Sub-Elements

ASCI08

Broken Sub-Elements In Shear Planes

Shear Plane

Rolling Causes Greatest Damage Along Shear Planes

ASCIO8

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Shear Plane

Polyanskii [|]3MC08

Sn Retained In Sub-Element Pack

ASCI08

The Applied Superconductivity Center The National High Magnetic Field Laboratory Florida State University

Polyanskii ³MC08

*T*_c Dependence vs. Rolling Deformation

- The IT RRP strand uses Ti doping (from Nb-Ti rods) to enhance high field J_c and consequently has a lower T_c than the Nb(Ta)₃Sn of the PIT strand.
- Deformation of the strands produces some broadening at the low end of the A15 transition due to lower-Sn A15 being formed.

ASCI08

*Transport I*_c Dependence at 12 T (4.2 K)

Strand Relative Deformation

- Both Strand
 Designs maintain J_c out to 80% of original diameter.
- PIT I_c drops faster after that perhaps because the short HT used for PIT strands (47-64 hr) means that loss of the high Sn is more catastrophic to A15 volume.

Measurement at FNAL

ASCIO8

Magnetic Moment at T=12 K and H=2 T

- Three different
 5 mm RRP strand
 sets measured.
 - 12 mm twist pitch applies different geometric distortions
- Magnetization measurements show considerable scatter in measurements
 for the deformed RRP strands

ASCI08

Conclusions

RRP and PIT behave differently under rolling deformation used to simulate cabling damage.

RRP:

- In high-Sn RRP, Sn leaked from broken subelements but trapped in the sub-element pack can still be used locally to produce current carrying Nb₃Sn (indicated by MO).
- Method Deformation inhomogeneous along length because of twisting.

PIT:

1. Sn lost from filament breakage in PIT strands results in critical loss of A15 layer.

Acknowledgments: Van Griffin, Jianyi Jiang, and Natanette Craig for measurement assistance

ASCI08

