Microstructure and Jc improvements in overpressure processed Ag-sheathed Bi-2223 tapes

Yongwen Yuan, Jianyi Jiang, Xueyu Cai, Satyabrata Patnaik, Matt Feldmann, Anatoly Polyanskii, Eric Hellstrom and David Larbalestier

University of Wisconsin-Madison

Yibing Huang

American Superconductor Corporation

Bob Williams

Oak Ridge National Laboratory

Support from DOE-EERE and partial facilities support from NSF-MRSEC

Overview

- What is overpressure (OP) processing and why use it?
- OP improves microstructure
- OP increases Jc
- Summary

Density varies through multi-step 2223 process

Full density 6.3 g/cc

Jiang et al. SuST 2001

- Density decreases as 2223 forms
- Rolling increases density
- Core can dedensify in final heat treatment
- 10-30% porosity exists in best multifilament tapes
- Cracks caused by IR never completely heal

What is overpressure (OP) processing?

Applies isostatic pressure to compress samples

- OP processing is a variant of hot isostatic pressing (HIP)
- Mixture of inert gas and O₂
- Inert gas applies pressure <200 atm
- pO_2 sets thermodynamic condition needed to form 2223 $pO_2 = 0.075$ atm

Ultimate Goal: 1 deformation/sinter (1DS) process

Overview of ORNL static OP system

Easy to change initial P_{total} and pO_2 , but gas is not replaced, P_{total} and pO_2 change during run

Overview of UW flow OP system

Gas continuously replaced during run; P_{total} and pO_2 remain constant

UW flow OP system, 900°C, 200 atm

Where to begin with OP?

T_{max} , P_{total} , and pO_2 are the most important OP parameters

- · Use simple HT schedule to optimize T_{max}
- Modify J. Jiang's 1 atm processing schedule for OP
- Address pO_2 uncertainty in OP gas mixture $pO_2 = 0.075$ to 0.10 atm at 148 atm

Simple heat treatment to optimize Tmax

P_{total}=148atm, pO₂=0.077atm (design)

Microstructure as a function of Tmax, 148atm

Ic varies with temperature - OP 148 atm

OP thermal process

Simplified the 1 atm HT for OP processing

 P_{total} =148 atm, pO_2 =0.077 atm (design)

See Jiang - 2MM04 Tuesday 4:00pm

At $P_{total} = 1$ atm, pO_2 has small influence on HT1 and IR, some on GT,

OP improves microstructure

- Densifies filaments
- Removes porosity
- Heals deformation cracks

OP removes porosity and heals cracks

1atm, multifilamentary IR tape $J_c = 33.5 \text{ kA/cm}^2$

148atm, multifilamentary IR tape $J_c = 58.7 \text{ kA/cm}^2$

OP densifies BSCCO filaments

Core cross section area

Mass density

AFM micrographs show lower porosity in OP tape

OP increases Jc

- OP drives Jc up by
 - Densifing core
 - Reducing 2212
 - Improving connectivity

OP increases Jc

Thermomechanical Processing of Bi2223 University of Wisconsin

Applied Superconductivity Center

Field dependence of 1 atm and OP multifilament tape

See Chandler - 2ME07 Tuesday 1:00pm

OP increases critical current density

OP succeeds in other tapes too

Samples	1atm	ОР
	(kA/cm ²)	(kA/cm ²)
Multi - 1 - IR	33.5	58.7
Multi - 2 – HT1	29	46.8
Multi – 2 – IR	41	48.5
Mono – IR	38.7	48

Jc increase in OP due to more than densifying the core

Jc increases as 2212 decreases

See Jiang - 2MM04 Tuesday 4:00pm &

See Huang - 2MM10 Tuesday 5:30pm

OP reduces 2212

Magnetization after crushing

MO-CR shows OP improves connectivity

1 atm

Magneto- Current- optic Reconstruction

See Patnaik – 2MA04 Tuesday 11:00am & Cai – 2ME09 Tuesday 1:00pm

Applied Superconductivity Center

Mono, 46mT, 77K

Direct comparison of connectivity

Transport Jc: 1 atm 39 kA/cm², OP 48 kA/cm²

What next?

- Optimize OP processing
- Combine OP with other novel processes
- OP processing at low pressure

Nonsuperconducting 2nd phases and microporosity still in OP tape

 $J_c = 58.7 \text{ kA/cm}^2$, 148 atm

How low can P_{total} go?

Summary

- OP improves Bi2223 microstructure by densifying filaments - remove porosity, heal cracks
- OP increases Jc by several mechanisms
 - OP increase Jc by ~20-70% wrt 1 atm processing, new record value of 22.4 kA/cm² at 77K,0.1T
 - OP increases Jc by densifying core, reducing 2212, improving connectivity
- OP needs to be optimized eliminate 2nd phases and microporosity
- OP densifies tape at 65 atm, lower pressure experiments are underway

