Improving Flux Pinning at High Fields in Intermetallic Superconductors: Clues from MgB₂ and MgCNi₃

Lance Cooley, Xueyan Song, and David Larbalestier

Applied Superconductivity Center University of Wisconsin Support: DOE, NSF, AFOSR

UW Collaborators:

J Choi, S Bu, C-B Eom—MgB₂ Thin Films

E Hellstrom, J Jiang, S Patnaik, A Polyanskii—MgCNi₃ and MgB₂

P Lee, C Fischer, A Goedecke, M Naus—LTS pinning

Princeton Collaborators:

T He, K Reagan, and R Cava

2002 ASC, 4-9 August 2002

Flux shear indicated early in MgB₂

Common pinning mechanism despite sample differences?

Flux Shear

Kramer phenomenology:

- $F_p = J_c \times \mu_0 H = \text{const.} \times C_{66} / a_0 = K_s h^{1/2} (1 h)^2$
 - Shear modulus $C_{66} \propto h (1 h)^2$ (with $h = H / H^*$)
 - Flux lattice constant $a_0 \propto h^{-1/2}$
 - $K_s \propto [B_{c2}(T)]^{5/2} \kappa^{-2}$
 - Corrections for non-local elasticity and grain size D
 - "Kramer plot" $J_c^{1/2}B^{1/4} \propto (1 h)$
- Assumptions
 - Grain boundaries are primary (only?) pinning sites
 - Pinning interactions are far apart compared with a_0
 - Flux lattice may deform plastically due to pinning and Lorentz forces
 - At J_c :
 - Regions of correlated flux shear past each other (Khalil 1998)
 - Dislocations glide (Kahan 1991)

WISCONSIN

Grain-boundary pinning and flux shear

Tracing of fracture surface Flux lattice at ~5 T (a_0 = 22 nm) Pinning only transverse to g.b. Domains of correlated flux separated by dislocations Glide of dislocations, or shear of domains

Loss of longitudinal correlation for large grains

Nanoscale grains in 1st generation MgB2 films made by PLD

- ~10 nm MgB2 grains
- Substantial, nanoscale MgO

MgB₂

C-axis fiber texture

Amorphous SrTiO₃

"Film 2", C. B. Eom et al., Nature 411, 558 (2001)

Kramer plot indicates 2 regions with different pinning mechanisms?

Core pinning by nanostructure of SC and N grains exceeds flux shear limit in MgB₂ film

Nanostructure of PLD film may consist of a matrix of ~10 nm MgB₂ grains surrounding ~5 nm MgO pinning centers

Can this be made artificially?

Any weakness of grain boundary amplified!

MgCNi₃

- Very potent pinning sites indicated by $F_p(H)$ but not obvious in microstructure
- *F_p(H,T)* like that of Nb-Ti nanoprecipitates?

WISCONSIN

HRTEM reveals coherent precipitates inside grains

Interference from cubic, graphite precipitates

Core pinning by intragranular nanoprecipitates in MgCNi₃ exceeds flux shear

~100 nm grains have embedded ~10 nm pinning centers

Are precipitation routes available?

WISCONSIN

Nanoscale pinning sites MgB₂

Precipitates block grain boundaries, break up current path

- Mg + B powders + 10wt.% Y_2O_3 nanoparticles
- XRD: YB₄ nanoprecipitates (Y₂O₃ + 4 MgB₂ \rightarrow 2 YB₄ + 3 MgO + Mg)

SNS behavior?

Conclusions

- New experiments show evidence for core pinning in intermetallic superconductors
 - Add nanoprecipitates!
- 2 approaches conceptually similar, perhaps different implementation
 - MgB₂ thin film: nanoscale matrix of MgB₂ grains with precipitates Assemble artificially?
 - MgCNi₃: nanoprecipitates inside larger grains *Precipitation route?*
- Film: Linear Kramer plots at high temperature, even though D ≈ a₀ — g.b. pinning weaker than usual?

Precipitates from a metastable solid solution

