186Os–187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core

Alan D. Brandon⁠¹,*, Richard J. Walker⁠², Igor S. Puchtel⁠³, Harry Becker⁠², Munir Humayun⁠³, Sidonie Revillon⁠⁴

¹ NASA Johnson Space Center, Mail Code SR, Building 31, Room 114 Houston, TX 77058 USA
² Isotope Geochemistry Laboratory, Department of Geology, University of Maryland at College Park, College Park, MD 20742, USA
³ Department of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Avenue, Chicago, IL 60637, USA
⁴ Southampton Oceanography Centre, School of Ocean and Earth Science, Waterfront Campus, European Way, Southampton SO14 3ZH, UK

Received 10 July 2002; received in revised form 15 October 2002; accepted 15 November 2002

Abstract

The presence of coupled enrichments in 186Os/188Os and 187Os/188Os in some mantle-derived materials reflects long-term elevation of Pt/Os and Re/Os relative to the primitive upper mantle. New Os data for the 89 Ma Gorgona Island, Colombia komatiites indicate that these lavas are also variably enriched in 186Os and 187Os, with 186Os/188Os ranging between 0.11983975±0.000022 and 0.11984705±0.000038, and with γ_{Os} correspondingly ranging from +0.15 to +4.4. These data define a linear trend that converges with the previously reported linear trend generated from data for modern Hawaiian picritic lavas and a sample from the ca. 251 Ma Siberian plume, to a common component with a 186Os/188Os of approximately 0.119870 and γ_{Os} of +17.5. The convergence of these data to this Os isotopic composition may imply a single ubiquitous source in the Earth’s interior that mixes with a variety of different mantle compositions distinguished by variations in γ_{Os}. The 187Os- and 186Os-enriched component may have been generated via early crystallization of the solid inner core and consequent increases in Pt/Os and Re/Os in the liquid outer core, with time leading to suprachondritic 186Os/188Os and γ_{Os} in the outer core. The presence of Os from the outer core in certain portions of the mantle would require a mechanism that could transfer Os from the outer core to the lower mantle, and thence to the surface. If this is the process that generated the isotopic enrichments in the mantle sources of these plume-derived systems, then the current understanding of solid metal–liquid metal partitioning of Pt, Re and Os requires that crystallization of the inner core began prior to 3.5 Ga. Thus, the Os isotopic data reported here provide a new source of data to better constrain the timing of inner core formation, complementing magnetic field paleointensity measurements as data sources that constrain models based on secular cooling of the Earth.

Published by Elsevier Science B.V.

Keywords: osmium; platinum; rhenium; komatiite

* Corresponding author. Tel.: +1-281-244-6408; Fax: +1-281-483-1573.
E-mail address: alan.d.brandon1@jsc.nasa.gov (A.D. Brandon).

0012-821X/02/$ – see front matter Published by Elsevier Science B.V.
doi:10.1016/S0012-821X(02)01101-9

EPSL 6508 21-1-03
1. Introduction

The Earth has undergone convective and conductive cooling since its formation \(\approx 4.6 \) billion years ago. Convection produces melting within the interior and material transport from the interior to the surface of the Earth. Convection also results in material exchange between the upper and lower mantle [1], and possibly between the core and the mantle [2,3]. Intimately coupled with the mechanisms of cooling and convection of the Earth’s interior is the formation and crystallization of the iron-rich inner core, which is controlled by heat flux across the core–mantle boundary and the earliest thermal state of the Earth [4,5]. Therefore, constraining the onset of inner core crystallization and the rate of crystallization over time is important for examining the formation, cooling, and chemical evolution of the Earth, and for understanding the factors that controlled the generation of the geodynamo in the past [6].

Walker et al. [7] proposed that the coupled \(^{187}\text{Re}–^{187}\text{Os} \) and \(^{190}\text{Pt}–^{186}\text{Os} \) radiogenic isotope systems might serve as a tracer of inner core growth and core–mantle interaction. The capabilities of this potential tracer system are based on the assumption that inner core crystallization has resulted in predictable increases in Re/Os and Pt/Os ratios in the liquid outer core, relative to the presumably chondritic ratios in the bulk core. Consequently, the outer core would have evolved over time to more radiogenic \(^{186}\text{Os}/^ {188}\text{Os} \) and \(^{187}\text{Os}/^ {188}\text{Os} \) ratios than the generally chondritic convecting upper mantle. The rate of inner core crystallization and the relative and absolute partitioning behaviors of Pt, Re, and Os are the key parameters that govern the \(^{186}\text{Os}/^ {188}\text{Os} \) and \(^{187}\text{Os}/^ {188}\text{Os} \) ratios of the outer core.

Recent investigations have reported coupled variations in \(^{188}\text{Os}/^ {188}\text{Os}–^{187}\text{Os}/^ {188}\text{Os} \) ratios for picritic lavas from the modern Hawaiian plume and a picritic intrusion from the 251 Ma Siberian plume [8–10]. The relative enrichments in both isotope systems are comparable to those predicted by Walker et al. [7] for outer core–mantle interactions. If the coupled enrichments do reflect an addition of Os from the outer core to the plumes, the data place minimum limits on the \(^{186}\text{Os}/^ {188}\text{Os} \) and \(^{187}\text{Os}/^ {188}\text{Os} \) ratios of the present-day outer core of \(\approx 0.119849 \) and \(\approx 0.140 \), respectively [9]. In addition, Os-rich alloys from placer deposits thought to be derived from Phanerozoic peridotites in SW Oregon may also indicate the presence of early fractionation between Pt and Os in their source, which has been argued to be the outer core [11,12].

Although these studies have revealed important information regarding the sources of plumes, additional evidence will be required to demonstrate that at least some plume-derived Os originated in the outer core. Furthermore, if additional precise information on the present-day and ancient Os isotopic compositions of the outer core can be obtained, then important constraints can potentially be placed on the crystallization rate of the inner core. This might then lead to re-evaluations of the cooling history of the Earth.

In order to further evaluate the coupled enrichments of \(^{186}\text{Os}/^ {188}\text{Os} \) and \(^{187}\text{Os}/^ {188}\text{Os} \) in the context of core–mantle exchange, initiation and rates of crystallization of the core, and ancient crustal recycling, new high-precision Os isotopic data from Gorgona Island, Colombia, komatiites were obtained in this study. These komatiites were derived from a mid-Cretaceous plume that initiated volcanism over a large area in the Caribbean, Central America, and northern South America [13–17]. The rocks are the youngest known komatiitic lavas, and their existence indicates unusually high temperatures in the mantle. The komatiites have initial \(\gamma_{\text{Os}} \) values ranging from \(-0.5 \) to \(+12.4 \) [18], where \(\gamma_{\text{Os}} \) is the percent deviation from a chondritic reference reservoir at a specified time [19,20]. This range in \(\gamma_{\text{Os}} \) is similar to the range measured for the Hawaiian picrites that show the coupled enrichments in \(^{186}\text{Os}/^ {188}\text{Os} \) and \(^{187}\text{Os}/^ {188}\text{Os} \) [9,10]. Hence, these rocks are ideal candidates to further examine the origins of coupled enrichments of \(^{186}\text{Os}/^ {188}\text{Os} \) and \(^{187}\text{Os}/^ {188}\text{Os} \) in plume materials.

2. Samples

The detailed geologic setting, petrology, and
geochemistry of the komatiites from 20 km² Gorgona Island, which resides off the Pacific Coast of Colombia, is presented elsewhere [13,17–19,21]. Argon isotopic results for Gorgona komatiites and basalts indicate eruptive ages of 86–92 Ma with an average of 88 Ma [21,22]. A Re–Os isochron for basalts that are spatially associated with the komatiites also indicates crystallization approximately 89 Ma ago [18]. Despite the large range in initial Os isotopic compositions for the komatiites [18,19], initial e_{Nd} values are relatively uniform at 10 ± 1, indicating a homogeneous source with long-term depletion in Nd/Sm ratio [13,15,21,23].

Samples from two different Gorgona komatiite collections were selected for Os isotopic measurements in this study (Table 1). Samples 92-31, 94-7A,B, and 92-11 are from one of these suites [13], while sample 521 is from a second suite [17].

3. Analytical techniques

Rhenium, Pt, and Os concentration data were obtained on aliquots of each sample via isotope dilution in tandem with three different digestion/spike equilibration methods. This approach was taken in order to assess sample heterogeneity and sample-spike equilibration issues (see Section 4). In addition, because Pt concentrations cannot be obtained by thermal ionization mass spectrometry, it was necessary to measure replicates for concentrations using inductively coupled plasma mass spectrometry (ICP-MS).

Most samples were digested for Re, Pt and Os concentrations by the Carius tube method [24]. Three sample powders were analyzed for Re and Os concentration by sodium peroxide (alkaline) fusion [25]. One sample was analyzed for Re and Os concentration, using the NiS fire assay fusion [26]. For the Carius tube method, 2 g of sample powder was spiked and dissolved in inverse aqua regia at 230°C in a glass tube. Osmium was separated from the matrix via carbon tetrachloride solvent extraction [27] and purified by microdistillation [28]. Rhenium and platinum were separated and purified by ion exchange chromatography. Procedural blanks were 4 ± 2 pg for Re, 67 ± 5 pg for Pt, and 3 ± 1 pg for Os, resulting in blank corrections of approximately $\leq 0.1\%$, $\leq 0.5\%$, and $\leq 0.1\%$ on their concentrations, respectively. The procedural blanks had $^{187}\text{Os}/^{188}\text{Os}$ of 0.175 ± 0.005.

The alkaline fusion technique was used as an alternative digestion technique [25]. Because of the relatively large amount (1 g) of komatiite sample analyzed, 6 g NaOH and 4 g of Na$_2$O$_2$ was used and the temperature was held at 600°C for 60 min. After digestion, the fusion cake was dissolved in H$_2$SO$_4$ to yield an approximately 6 N solution, then distilled in a conventional distillation apparatus using 15 ml of a 30% solution of H$_2$O$_2$ as oxidant and 3 ml 8.8 M HBr as the trap solution. The Os fraction was further purified by microdistillation. A total chemistry blank measured with this batch of samples was 50 pg for Re and 2 pg for Os, resulting in blank corrections of $\leq 5\%$ and $\leq 0.15\%$, respectively.

A 2 g aliquot of one sample (94-7 Powder B, Table 1) was spiked and processed using NiS fire assay at the University of Maryland [10,6,29]. The procedural blanks were 30 pg for Re, and 2 pg for Os, resulting in blank corrections of 2.9% and $< 0.15\%$, respectively.

For obtaining high-precision analyses of Os isotopes, 50–100 g of unspiked sample were fused using the NiS fire assay procedure [10,26]. For one sample (GOR 92-11), the Os concentration was 33 ppb (Table 1). Only 2 g of this sample was sufficient for the high-precision measurements, and hence, unspiked aliquots were processed via the Carius tube method for these analyses. Osmium was extracted and purified using the procedures listed above for the spiked samples. Two different Os blanks were 0.44 and 1.0 pg per g of fused sample, and have $^{186}\text{Os}/^{188}\text{Os} = 0.1199 \pm 0.0002$, and $^{187}\text{Os}/^{188}\text{Os} = 0.124 \pm 0.005$. Corrections to the sample ratios are included in the uncertainties cited (Table 1).

The Re and Os isotopic ratios for the concentration analyses were measured as oxides using a single-collector NBS-style mass spectrometer at the University of Maryland in the negative ion mode [10]. The Os and Pt isotopic ratios for the concentration analyses at the University of Chi-
Table 1
Re–Pt–Os isotopic systematics of the Gorgona komatiites

<table>
<thead>
<tr>
<th>Sample</th>
<th>Re</th>
<th>Os</th>
<th>Pt</th>
<th>187Re/188Os</th>
<th>190Pt/188Os</th>
<th>184Os/188Os</th>
<th>186Os/188Os</th>
<th>187Os/188Os</th>
<th>Yb</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOR 92-31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>b</sup></td>
<td>0.9356</td>
<td>2.038</td>
<td>2.213(10)</td>
<td>0.004304</td>
<td>0.12980(30)</td>
<td>+0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>c</sup></td>
<td>2.38</td>
<td>11.08</td>
<td>2.067(20)</td>
<td>0.13056(15)</td>
<td>+0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na peroxide fusion<sup>a</sup></td>
<td>1.056</td>
<td>2.463</td>
<td>0.001309(9)</td>
<td>0.1198444(79)</td>
<td>0.1230275(110)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-corrected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOR 94-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>a</sup></td>
<td>0.9374</td>
<td>0.990</td>
<td>4.566</td>
<td>0.13585(13)</td>
<td>+2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>b</sup></td>
<td>1.089</td>
<td>1.096</td>
<td>4.793</td>
<td>0.13516(22)</td>
<td>+1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>c</sup></td>
<td>1.090</td>
<td>0.9732</td>
<td>5.404(8)</td>
<td>0.13637(6)</td>
<td>+1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na peroxide fusion<sup>a</sup></td>
<td>1.305</td>
<td>1.674</td>
<td>3.759</td>
<td>0.13445(16)</td>
<td>+1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>a</sup></td>
<td>0.520</td>
<td>0.925</td>
<td>2.710</td>
<td>0.13656(30)</td>
<td>+4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>c</sup></td>
<td>1.144</td>
<td>15.27</td>
<td>0.012248</td>
<td>0.14108(27)</td>
<td>+3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIS fusion<sup>a</sup></td>
<td>0.9343</td>
<td>0.6865</td>
<td>6.560</td>
<td>0.13669(19)</td>
<td>+4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na peroxide fusion<sup>a</sup></td>
<td>0.936</td>
<td>1.305</td>
<td>3.443</td>
<td>0.14233(34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-corrected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOR 92-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>b</sup></td>
<td>0.6924</td>
<td>33.18</td>
<td>0.1005(18)</td>
<td>0.12628(30)</td>
<td>−0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>b</sup></td>
<td>0.4336</td>
<td>31.29</td>
<td>0.0668(40)</td>
<td>0.12709(4)</td>
<td>+0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>c</sup></td>
<td>36.97</td>
<td>8.487</td>
<td>0.000212</td>
<td>0.1270800(81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-corrected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOR 521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>a</sup></td>
<td>1.826</td>
<td>1.475</td>
<td>5.9834</td>
<td>0.1198464(12)</td>
<td>0.138024(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT<sup>c</sup></td>
<td>1.712</td>
<td>16.602</td>
<td>0.0089</td>
<td>0.1380233(31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-corrected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Re, Os and Pt concentrations are in parts per billion. Initial Yb₀ is calculated for 89 Ma, relative to average chondrite (using equation 1 of [20]).

^a New data UMD.

^b [18].

^c New data UofC.
Concentrations of Re and Os for the three komatiites analyzed were comparable to other Gorgona komatiites [18,19], with Re and Os concentrations ranging from 0.520 to 1.83 ppb and 0.925 to 2.46 ppb, respectively. Peridotite 92-11 contains unusually high concentrations of Os (> 30 ppb) and low Re (< 0.7 ppb). Platinum concentrations for all four samples range only from 11.1 to 16.6 ppb. Replicates of Re and Os concentrations using both Carius tube and Na peroxide fusion methods are within ±6-28% (Table 1). Such ranges for concentrations are typical for these elements as a likely result of the nugget effect [20] and do not appear to result from incomplete sample–spike equilibration or variable access to these elements using these two different digestion techniques [20,24,25]. This is because, despite the measured Re and Os isotope heterogeneity of the different replicates, importantly, all of the corrected initial δ_{Os} values using all three techniques for each sample fall within these uncertainties. The initial δ_{Os} values for the four rocks, determined primarily by Carius tube digestion, range from −0.2 to +4.9. Uncertainties in the initial ratios corrected for 187Re decay since crystallization are $\approx \pm 0.5 \, \delta_{Os}$ units [18], given the relatively low Re/Os ratios of the rocks and their relatively young age. The initial δ_{Os} values plotted in Fig. 1 are the average of the spiked replicates for each sample in Table 1 where high-precision 186Os/188Os was measured.

The 190Pt/188Os ratios for all four rocks range from 0.0002 to 0.0122. Given the long half-life of 190Pt ($\lambda = 1.54 \times 10^{-12} \, \text{a}^{-1}$) and 190Pt/188Os ratios that range only from 0.12 to 7 times the chondritic ratio (0.00174), the accumulation of 186Os is not measurable over 89 Ma since formation. Hence, the measured and initial 186Os/188Os of all samples are identical within the cited analytical uncertainties. The 186Os/188Os ratios for these rocks range from 0.1198397 ± 0.00002 to 0.1198470 ± 0.00002. These data fall within the range of 186Os/188Os of 0.1198339 ± 0.00002 to 0.1198479 ± 0.00002 for Hawaiian picrites, and the data indicate that at least some portions of the mantle source of the Gorgona komatiites contain...
The 187Os/188Os ratios of the samples determined by dissolving 2 g of sample using one of the three digestion techniques are in good agreement with the high-precision results determined by Ni-S fusion of 50-100 g of powder (Table 1). The initial 186Os/188Os of Powder B (+4.4 ± 0.5) is significantly higher than the average value for Powder A (+1.7 ± 0.4). Hence, we conclude that samples from two separate flows with different initial Os isotopic compositions were inadvertently given the same sample number. Only the hand sample from which Powder B was produced was sufficiently large to produce several hundred grams of sample, so although we report 186Os/188Os measurements could only be made for Powder B.

5. Discussion

The four Gorgona samples form a linear array on a plot of 186Os/188Os versus 186Os that is similar to, but not identical to the array generated for the combined Hawaiian and Siberian suites (Fig. 1). The Gorgona samples with the least radiogenic 186Os/188Os of 0.11983975 and 0.11984055 overlap within uncertainties of the range of ratios measured for upper mantle materials, including chromites and Os-rich alloys from ophiolite peridotites, and bulk abyssal peridotites [8-10,31]. Combined, these upper mantle materials define an average present-day 186Os/188Os of 0.11983455 (2σ of the mean, n = 18). The most radiogenic Gorgona sample (GOR 94-7 Powder B) has 186Os/188Os of 0.11983975 ± 0.01984055 ± 0.02 overlap within uncertainties of the range of ratios measured for upper mantle materials, including chromites and Os-rich alloys from ophiolite peridotites, and bulk abyssal peridotites [8-10,31].
would have a present-day $^{186}\text{Os} / ^{188}\text{Os}$ of about 0.119868–0.119872 and a Q_{Os} of +16 to +19 (Fig. 1). The possible origin of this component is evaluated below.

5.1. Crustal recycling

Crustal recycling has been frequently cited to explain $^{187}\text{Os} / ^{188}\text{Os}$ enrichments in ocean island basalt (OIB) sources [34,35], and also enrichments and depletions in other isotopic systems [36]. With regard to $^{187}\text{Os} / ^{188}\text{Os}$ enrichments, this stems from the observation that recycled mafic crust contains two to three times the concentration of Re as fertile mantle, yet little Os. Consequently, the recycling of gabbroic or basaltic oceanic crust back into the mantle will lead to the generation of hybrid mantle with suprachondritic Re/Os, that over time will evolve to suprachondritic $^{187}\text{Os} / ^{188}\text{Os}$ [19]. Because of the viability of crustal recycling models to explain many of the isotopic characteristics of OIBs, similar models involving crustal recycling have been proposed to account also for the coupled $^{186}\text{Os} – ^{187}\text{Os}$ systematics for the Hawaiian and Siberian systems [37]. The original models of mafic crustal recycling to explain enrichments in ^{187}Os in mantle sources [19,34,38], however, are problematic with regard to ^{186}Os enrichments, because mafic crust tends not to be appreciably enriched in Pt relative to fertile mantle. Consequently, recycling of gabbroic or basaltic oceanic crust can, in some instances, account for enrichments in $^{187}\text{Os} / ^{188}\text{Os}$, but cannot easily account for accompanying enrichments in $^{186}\text{Os} / ^{188}\text{Os}$. For example, Brandon et al. [9,10] concluded that ancient crustal recycling could not explain the Hawaiian–Siberian Os data, based on two lines of evidence. First, simple mixing relationships show that large proportions (70% or more) of ancient recycled crust must be added to a peridotitic source to raise the $^{186}\text{Os} / ^{188}\text{Os}$ of average upper mantle to the radiogenic ratios observed. High MgO magmas, such as the parental magmas of the Hawaiian picrites, cannot be produced from a hybrid source containing such large amounts of crust [39]. Second, no known crustal materials thought to be present in oceanic crust have the Pt/Re ratios (88–100) necessary to produce the observed correlated coupled enrichments of $^{186}\text{Os} / ^{188}\text{Os}$ and $^{187}\text{Os} / ^{188}\text{Os}$. Instead, most crustal materials have Pt/Re ratios of ≤ 25, consistent with the geochemical behavior of Pt and Re in crustal systems [10]. Thus, mixing ancient crustal materials with upper mantle will result in mixing lines with much shallower slopes in plots of $^{186}\text{Os} / ^{188}\text{Os}$ versus $^{187}\text{Os} / ^{188}\text{Os}$ than the linear correlation observed in the Hawaiian–Siberian data. Recently, however, it has been noted that some metalliferous sediments that formed via hydrothermal processes at the ocean–crust interface have Pt/Re ratios that are up to 645 [37,40]. In addition, some Fe–Mn-rich nodules also can have high Pt/Os and relatively low Re/Os [41]. The high Pt/Re characteristics of metalliferous sediments led Ravizza et al. [37] to suggest that, ‘while the existence of these high Pt/Re ratios in basal metalliferous sediments does not preclude a core–mantle boundary origin for the Hawaiian mantle plume, it does present a potentially viable alternative interpretation’. The viability of this hypothesis is further tested here considering the Hawaiian suite and the new Gorgona suite.

Mixing lines were calculated for mixtures of metalliferous sediment and fertile mantle (Fig. 2). For the calculations, Os isotopic compositions of the sediments (umbers) were modified to be consistent with 2 Ga of radiogenic ingrowth. Sample MF164F from the Ravizza et al. [37] suite with the highest Pt/Os (127.4) and Pt concentration (22.3 ppb), and having an initial $^{187}\text{Os} / ^{188}\text{Os}$ of 0.505, was mixed with peridotite containing 3.1 ppb Os, a Q_{Os} of 3, and $^{186}\text{Os} / ^{188}\text{Os}$ of 0.1198345 (mixing line 1, Fig. 2). This mixing line does not match the trends for either the Gorgona or Hawaiian data. The slope for the Gorgona trend can be artificially matched by either lowering the assumed initial $^{187}\text{Os} / ^{188}\text{Os}$ of the 2 Ga aged umber to 0.3 (mixing line 2) or lowering the $^{187}\text{Re} / ^{188}\text{Os}$ of the umber by a requisite amount. Either scenario requires open-system behavior of Re–Os since the formation of an umber that at 2 Ga was similar to MF164F. Sample MF164F is the only one reported by Ravizza et al. [37] for which mixing lines can potentially match the observed trends delineated by the Hawaiian or Gorgona suites. Other umbers that are aged 2 Ga produce
mixing lines that are much shallower than the one calculated using MF164F (e.g. mixing line 3). Thus, the presence of ancient recycled sediments in the mantle sources of some plume components might satisfactorily explain the Os isotopic systematics of only those plume-derived lavas that lie to the right of the linear trends defined by the Hawaiian and Gorgona data sets. Such rocks do exist, such as the Hawaiian Koolau picrites [10] that lie well below the trend for the other Hawaiian lavas (Fig. 2), and possibly the Os-rich alloy grains that plot to the right of the main trend of the SW Oregon data in Fig. 1 [11,12]. Indeed, the presence of recycled sediments in the source of the Koolau picrites is also consistent with O and Pb isotopic compositions [10,42].

It is possible that a metalliferous sediment may one day be discovered with Pt/Os and Re/Os ratios that are sufficient to generate, over time, a reservoir with an Os isotopic composition that can be mixed with a mantle component to generate mixing lines on plots of 186Os/188Os versus 187Os/188Os that match those of the Hawaiian or Gorgona trends. However, several additional lines of evidence suggest that recycling of such sediment can never be considered a viable explanation for the Gorgona and Hawaiian data sets. First, in the scenario where the sediment with the highest Pt concentration is used (22.3 ppb, MF164F), \sim 40 wt% of the umber is required in the mix in order to generate the samples from Gorgona with a 186Os/188Os of 0.119846 (Fig. 2). Allowing 3 Ga of radiogenic ingrowth, the proportion of umber necessary to produce a 186Os/188Os of 0.119846 matching mixing line 2 is \sim 30%. The average Pt concentration of the umber data reported by Ravizza et al. [37] is 13.7 ppb. Using this Pt concentration with the other characteristics listed above, and allowing 3 Ga of radiogenic ingrowth, mixing line 2 will produce a 186Os/188Os of 0.119846 when \sim 33% of the hypothetical umber is added to a peridotite source. Adding this amount of umber to a peridotite source will have identifiable petrological consequences. The umbers average 95%/C93 MnO$_2$ and 53%/C913% Fe$_2$O$_3$ [37]. Adding umber to the source of Hawaiian or Gorgona lavas will result in a hybrid source with anomalously high Mn and Fe and anomalously low Fe/Mn. For example, mixing an umber that has had 2 Ga of radiogenic Os ingrowth with peridotite will result in a mixing curve with large shifts in Mn content with little effect on the 186Os/188Os of the hybrid source, until at least 20% of the mixture is umber (Fig. 3). Partial melting of such a source with strongly elevated Mn contents would result in an easily detectable difference between the lavas that carry the coupled radiogenic Os signature (e.g. GOR 521, 94-7B, Loihi, Hualalai) relative to lavas derived from a mantle source that does not (e.g. GOR 92-31, Mauna Kea, Kilauea). But such lavas do not have highly variable Mn contents, nor are they elevated in Mn content (Fig. 3, [11,17,39]).

Second, metalliferous sediments are probably not of sufficient volume to generate significant
compositional heterogeneities in a large mantle plume, such as the Hawaiian or Caribbean plumes. The formation of metalliferous sediments, such as ochres and umbers, occurs as a result of minor redistributions of Pt, Re and Os at the seawater–oceanic floor interface. No new atoms of these elements are produced within this interface. As such, a volume of oceanic crust on the scale of 1 km3 or larger that hosts metalliferous sediments will contain the same number of atoms of Pt, Re and Os as a similar volume of crust that lacks the sediments. Thus, recycling of high Pt/Os sediments can only affect the $\text{Os}^{186}/\text{Os}^{188}$ of a very small portion of the mantle. Third, these umbers apparently require the oxidizing conditions found in modern marine sediments for the genesis of their high Pt/Re ratios. It is not known if conditions in the Archean and early Proterozoic were conducive to the formation of such sediments.

Finally, the fact that several independent data sets converge to a single area in $\text{Os}^{186}/\text{Os}^{188}$ versus γ_{Os} (Figs. 1 and 2), requires a component common to all of the suites. These data require that the same metalliferous sediments with the same Pt–Re–Os isotopic systematics reside in the mantle in widely dispersed locales. Hence, this umber recycling model requires special circumstances that are not realistic. In conclusion, these considerations indicate that recycling of mafic oceanic crust, with or without accompanying sediments, is not consistent with the linear trends observed between $\text{Os}^{187}/\text{Os}^{188}$ and $\text{Os}^{186}/\text{Os}^{188}$. Ancient recycling is also inconsistent with the compositions of the MgO-rich lavas that are the basis for the linear trends that have been detected.

5.2. Convergence – outer core?

Plausible scenarios for the origin of the radiogenic Os isotopic component that lies at the junction between the Hawaiian–Siberian and Gorgona data sets require that such a component is homogeneous and sufficiently pervasive to manifest itself in widely dispersed regions in the Earth’s mantle. That reservoir could be the outer core. Walker et al. [7] speculated that the entrainment of very small amounts of evolved outer core ($<1\%$) into mantle at the core–mantle boundary could ultimately lead to the formation of an isotopically heterogeneous plume with respect to $\text{Os}^{187}/\text{Os}^{188}$ and $\text{Os}^{186}/\text{Os}^{188}$. This, they argued, could lead to the generation of plume-derived magmas with Os isotopic characteristics consistent with liquid metal–solid metal partitioning of Re, Pt and Os. Puchtel and Humayun [29] subsequently argued that Os and other highly siderophile elements might also be isotopically exchanged between the core and mantle, obviating the requirement for significant mass transfer of Fe and Ni from the core into the mantle. Indeed, as noted above, it has been concluded that the coupled enrichments of Os isotopes observed in the Hawaiian–Siberian data set are best explained via liquid metal–solid metal partitioning [8–10], as deduced from the relative fractionations between Pt, Re, and Os observed for asteroidal cores and for iron metal crystallization experimental partitioning data [44,45]. Meibom and Frei [12] also favored an outer core origin for the Os-rich alloy grains from SW Oregon that lie on the positively-sloped trend in Fig. 1. They too noted the possible importance of the zone of convergence between the linear trend of their data and the trend for the Hawaiian lavas (Fig. 1).

The addition of the Gorgona suite provides...
more compelling evidence that the convergence zone is real, and does indeed require a significant reservoir from which mantle materials can periodically extract Os that is enriched in 187Os/188Os and 186Os/188Os relative to the contemporary convecting upper mantle. If this reservoir is the outer core, it places important constraints on the rate of inner core crystallization, and possibly the composition of the core. If the coupled enrichments in these suites reflect the presence of an outer core component, the convergence of the linear trends to a 186Os/188Os ratio of 0.119868–0.119872 and a γ_{Os} of +16 to +19 may reflect the Os isotopic composition of the evolved outer core within the last several hundred million years. This interpretation requires that the linear correlations defined by the Gorgona and Hawaiian data are mixing lines between relatively recent outer core and mantle components that range from depleted to undepleted, relative to the estimated composition of the primitive upper mantle (PUM, $\gamma_{Os} = +2$ at $T = 0$ [33]). In the case of the Hawaiian suite, the end-member has a γ_{Os} value of approximately +1 to +2, consistent with some estimates of the composition of the modern convecting upper mantle and PUM [33,46]. For the Gorgona suite, the depleted mantle component had an initial γ_{Os} of approximately −3, assuming this mantle component had a 186Os/188Os similar to the average upper mantle of 0.1198345 at the time of eruption, or −5 extrapolating back to a common PUM evolution trajectory of 186Os–187Os (Fig. 1). None of the Gorgona komatiites have initial γ_{Os} values of < -0.5 [18], so there is no direct Os isotopic evidence for a depleted source. However, the initial ε_{Nd} values for Gorgona komatiites ranging from +9.2 to +11.4 indicate a source that experienced long-term depletion in the Nd/Sm ratio ([17,18] and references therein). The extrapolated end-member γ_{Os} value of −3 to −5 may be within the range of variation in the convecting upper mantle [31,47]. Alternatively, it may represent derivation from a reservoir other than the convecting upper mantle, that is somewhat more depleted than the convecting upper mantle, such as recycled ancient, melt-depleted lithospheric mantle [33]. The data array linear trend defined by most of the Os-rich alloy grains analyzed from SW Oregon is more problematic, given the interpretation of an outer core origin and mixing. Unlike for the Gorgona and Hawaiian trends, the trend for these grains extrapolates to a point that is consistent with approximately chondritic initial ratios for both 186Os/188Os and 187Os/188Os during the first 500 Ma of Earth history (Fig. 1). Thus, if direct mixing with a source that lies along the chondritic evolution trajectory was involved, the depleted end-member is more depleted than any reservoir known to exist today. Instead of mixing, Meibom and Frei [12] implied that the grains formed directly from the Os metal that resided in the outer core. If the grains represent primary crystallization products of a major reservoir, then they essentially record the Os isotopic composition of that reservoir at the time they formed, given their extremely low Re/Os and Pt/Os ratios. Hence, the implication is that the least radiogenic of the samples formed at approximately 2.6 Ga [12].

In summary, additional documentation and considerations will be required to unravel the origins of the Os-rich alloy grains from SW Oregon. However, the combined relationships for Hawaii–Siberia, Gorgona, and, although viewed with caution, possibly the SW Oregon Os-rich alloy grains, indicate that a reservoir with distinct Os isotopic characteristics is present in the Earth that is prevalent enough to be manifested in mantle-derived materials in widely dispersed locations. This Os isotopic composition is consistent with the outer core model previously proposed [7–10] and will be further considered below.

5.3. Core crystallization

The convergence of the Os isotopic data in the Gorgona, Hawaiian–Siberian, and possibly the SW Oregon data sets may constrain the recent Os isotopic composition of the outer core, as supported by arguments presented above. From these data, the isotopic composition is estimated to be more radiogenic than the minimum estimate obtained from the Hawaiian data alone [9,10]. In this section, four different crystallization models for the Earth’s core are evaluated in the context of the Os isotopic data presented above and those
from the literature, assuming that the point of convergence provides the Os isotopic composition of the modern outer core. The goal of this modeling is to draw comparisons with thermodynamic and geophysical models for the Earth’s thermal cooling history, in order to determine which Os isotope outer core evolution scenarios are most realistic, and vice versa.

For the first three models, it is assumed that inner core crystallization began at 4.4 Ga (Fig. 4). Inner core crystallization proceeds to 5.5%, which is the present-day weight percent of the bulk core [7]. In Model 1, the core undergoes very rapid crystallization in the first 100 Ma of inner core growth, such that most of the inner core is crystallized by 4.3 Ga (based on [7,12]). In Model 2, the core undergoes rapid crystallization during the Archean, followed by slower, but constant crystallization in post-Archean times (hybrid between Models 1, 3 and 4). In Model 3, the inner core is crystallized at a constant crystallization rate over Earth history (based on [5]). Finally, in Model 4, core crystallization is delayed until 3.5 Ga, wherein the core undergoes rapid crystallization during the Archean followed by slower, but constant rate of crystallization during the post-Archean (based on [4]).

Parameters used and resultant Os isotopic evolution growth curves are presented in Table 2 and Figs. 4–6. For these models, the solid metal–liquid metal partition coefficients (D_{sm}) for Re and Os necessary for producing a present-day 186Os/188Os = 0.119870 and $\gamma_{\text{Os}} = +17.5$ (i.e. the approximate convergence point of the Gorgona and Hawaii data) were adjusted assuming D_{Pt} was 2.9 [7]. In order to determine which D_{s} may be acceptable for simulating Re and Os behavior in the Earth’s core, the calculated D_{s} for the four models are compared to the range in D_{s} obtained for high-pressure experiments [44] in Fig. 5. The D_{s} required for the four models mostly plot within un-

![Fig. 4. Diagram illustrating the percent of core crystallized to 5.5% over time for Models 1–4 in Table 2.](EPLS 6508 21-1-03)

<table>
<thead>
<tr>
<th>Model 1, Rapid</th>
<th>Model 2, Intermediate</th>
<th>Model 3, Constant</th>
<th>Model 4, Intermediate delay start</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{Pt}</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>D_{Re}</td>
<td>18.25</td>
<td>22.7</td>
<td>26.2</td>
</tr>
<tr>
<td>D_{Os}</td>
<td>28.2</td>
<td>36.4</td>
<td>44.2</td>
</tr>
<tr>
<td>@ 5.5% crystallization and 0 Ma:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt (ppm)</td>
<td>5.254</td>
<td>5.254</td>
<td>5.254</td>
</tr>
<tr>
<td>Re (ppm)</td>
<td>0.096</td>
<td>0.075</td>
<td>0.061</td>
</tr>
<tr>
<td>Os (ppm)</td>
<td>0.661</td>
<td>0.415</td>
<td>0.267</td>
</tr>
<tr>
<td>186Os/188Os</td>
<td>0.119870</td>
<td>0.119870</td>
<td>0.119870</td>
</tr>
<tr>
<td>190Pt/188Os</td>
<td>0.00736</td>
<td>0.01199</td>
<td>0.0180</td>
</tr>
<tr>
<td>γ_{Os}</td>
<td>+17.5</td>
<td>+17.5</td>
<td>+17.5</td>
</tr>
<tr>
<td>187Re/188Os</td>
<td>0.7055</td>
<td>0.8723</td>
<td>1.1125</td>
</tr>
</tbody>
</table>

a Starting parameters at 4.4 Ga: Pt = 5.85 ppm, Os = 3.08 ppm, Re = 0.2552 ppm, 186Os/188Os = 0.11982266, 190Pt/188Os = 0.00174, $\gamma_{\text{Os}} = 0$, 187Re/188Os = 0.4018.

b Starting parameters at 3.5 Ga: Pt = 5.85 ppm, Os = 3.08 ppm, Re = 0.2552 ppm, 186Os/188Os = 0.11982509, 190Pt/188Os = 0.00174, $\gamma_{\text{Os}} = 0$, 187Re/188Os = 0.4018.
certainty of those obtained for the experiments, with two exceptions. The D_{Os} for the constant growth Model 3 is $\sim 39\%$ higher (44.2 versus 31.7 \pm 2.36) and for delayed growth Model 4 is $\sim 27\%$ higher (40.4) than the range observed in the experiments (Fig. 5). However, given the unknowns associated with simulating metal crystallization at the high temperatures and pressures of the Earth’s core, the overall fit between the Ds calculated, based on Re–Pt–Os isotopic systematics in this study, and the Ds obtained in the experiments is strong support for the validity of the models presented here. In addition, the D_{Pt} of 2.9 is based on crystallization within the Group IIAB iron meteorite system [7,48]. For the experiments, D_{Pt} ranged from 0.6 to 3.9 [44]. If D_{Pt} is lowered in the crystallization models, there will be a corresponding reduction in both D_{Re} and D_{Os}. Also of note, the lower D_{Pt} and the higher D_{Re} and D_{Os} were obtained for experiments with larger amounts of light alloying components such as S and P [44]. The silicate–silicate melt Ds estimated for mantle melting (D_{silic}) are also plotted in Fig. 5. These Ds do not match those for partitioning in Fe metal systems. The D_{Re} is several orders of magnitude lower, resulting in $D_{\text{Os}/\text{Re}}$ and $D_{\text{Pt}/\text{Re}}$ that are higher. Hence, processes that involve fractionation of these elements in Fe metal-free, silicate-rich systems cannot create the coupled ^{186}Os and ^{187}Os enrichments over Earth history.

The ramifications for explaining Os isotopic compositions of various sample suites with these core evolution models are presented in Fig. 6A,B, where the outer core evolution curves are plotted versus time. Several conclusions can be made regarding the crystallization history of the core. First, an end-member Os isotopic composition for any of the four outer core evolution models over time can explain the ^{187}Os-enriched lavas measured to date with the exception of modern to recent OIB with $\gamma_{\text{Os}} = \pm 17.5$ (Fig. 6B). This is because all of the lava data plot below the four model core evolution lines, and mixing between mantle components and outer core at any time in Earth history should produce a hybrid source that falls between these two end-members. Some OIB are more enriched in ^{187}Os than the present-day γ_{Os} of the outer core predicted by the convergence of Gorgona, Hawaii–Siberia, and the SW Oregon data (Fig. 2). These require an additional source of radiogenic ^{187}Os, likely ancient recycled crust [19,42]. However, as shown above and previously [9,10], ancient recycled crustal material cannot explain the coupled enrichments of both ^{186}Os and ^{187}Os in plume materials.

Second, if the constant crystallization (Model 3) or a delayed crystallization (Model 4) holds, then the lavas have completely inherited the outer core Os isotopic composition [29]. In contrast, the rapid and intermediate models (1 and 2) would result in an Os isotopic composition of the hybrid mantle source that is intermediate between the outer core and the original mantle composition (Fig. 6). Therefore, if material exchange between the outer core and the mantle results in complete transfer of the Os isotopic composition of the outer core across the core–mantle boundary, then rapid cooling of the Earth that resulted in early rapid inner core formation to near its present size is not required. Instead, core crystallization rates would be more consistent with a model where cooling of the Earth’s deep interior was relatively slow. Third, data for the 2.8 Ga Kostomuksha komatiites and 2.7 Ga Belingwe komatiites indicate that
mantle sources with γ_{Os} of approximately +3.0 existed by the late Archean [54,55]. These enrichments could be the result of either very early recycling of appreciable mafic crust into the sources of the komatiites, or an outer core origin for the Os. If the enrichments in these lavas over time reflect the evolving isotopic composition of Os in the outer core, then the inner core must have begun to crystallize at or prior to 3.5 Ga. Delaying the onset of inner core crystallization until 3.5 Ga or later would have difficulty explaining the Belingwe and Kostomuksha data at 2.7–2.8 Ga, unless D_{Os} and D_{Re} are much greater than those used in the models here and in the experiments [44]. Thus, the onset of inner core crystallization early in Earth history is considered to be consistent with these Os isotopic constraints, contrary to some secular cooling models [56–58], but consistent with others [4,5]. The average age of the inner core in Models 3 and 4 (i.e. the time at which half of the inner core is crystallized), are 2.25 and 2.75 Ga, respectively (Fig. 4). These average ages fall within the range of those calculated for the inner core integrated over Earth history on the basis of the heat loss models [59]. The age of the inner core could be as high as 2.7 Ga or as low as 1 Ga, depending on model assumptions and uncertainties, and the concentrations of U, Th, and K [59]. The concentrations of these elements are not precisely constrained at present and will depend on the bulk composition of the core, including what the light alloying component(s) is/are [60]. Therefore, within the present uncertainties in constraining the average age of the inner core, Models 3 and 4 presented here on the basis of Os isotopes are consistent with estimates obtained using geophysical and thermodynamic parameters [4,5,59].

6. Conclusions

The 89 Ma Gorgona komatiites have coupled enrichments of $^{186}\text{Os}^{188}\text{Os}$ and $^{187}\text{Os}^{188}\text{Os}$ similar to those displayed by the Hawaiian and Siberian plumes but with a different slope. It has been proposed that these coupled enrichments could be explained by adding ancient hydrothermally altered or metalliferous sediments into the source of these plumes [37]. Mixing models, however, convincingly show that sediment recycling cannot explain the correlated $^{186}\text{Os}^{187}\text{Os}$ systematics of the Hawaiian, Siberian or Gorgona suites. Adding these sediments to their plume sources would also result in strongly elevated Mn and Fe contents that are not observed. A model involving Os exchange during core–mantle interaction is able to explain the coupled Os isotopic variations of the

![Fig. 6](image-url)
Gorgona, Hawaiian and Siberian plume data sets. This model has the advantage of reconciling why a common isotopic component exists in mantle-derived materials from widely dispersed locales, and points to a source that is relatively extensive and homogeneous in the Earth’s interior.

If the coupled enrichments of $^{186}\text{Os}/^{188}\text{Os}$ and $^{187}\text{Os}/^{188}\text{Os}$ for these materials reflect the presence of outer core Os in the plumes, then the onset of core crystallization must have been within the first billion years of Earth history. Inner core crystallization must have begun relatively early in Earth history [4,5]. Models for the cooling history of the Earth that result in inner core crystallization commencing as late as 2–3 Ga [56–58] would be inconsistent with the putative evolution of Os isotopes in the outer core, given the solid metal–liquid metal partition coefficients used for generating the models. The average age of the inner core calculated from Os isotope evolution Models 3 and 4 presented here, that allows for constant inner core growth or onset of crystallization delayed until 3.5 Ga, respectively, fall within the range of integrated ages for the inner core over Earth history [59]. These comparisons are consistent with thermal cooling models where crystallization occurs progressively over 4.5 Ga, rather than rapid early crystallization followed by little crystallization of the inner core since the Archean.

High-precision ^{186}Os–^{187}Os data for Proterozoic and Archean high-MgO lavas may ultimately provide clues towards further constraining the rate of inner core crystallization. Future work should be directed at performing high-precision $^{186}\text{Os}/^{188}\text{Os}$ measurements on ancient lavas where both chondritic and positive initial γ_{Os} have been demonstrated. Additional considerations of the mechanism of core–mantle exchange, and further partitioning experiments for highly siderophile elements are needed in conjunction with these measurements for better constraints on inner core crystallization and thermal cooling of the Earth over time. Such combined efforts will aid in further understanding the effects of core–mantle exchange on the highly siderophile budget of the silicate Earth.

Acknowledgements

This work was supported by NSF grants EAR 9910485 to A.D.B., EAR-CSEDI 0001921 to R.J.W., and EAR 0106974 to M.H. Journal reviews by Robert Frei, Chris Hawkesworth, Simon Turner, and one anonymous reviewer are gratefully acknowledged.[BW]

References

